Sharing a Corn/Soybean Rotation Predictive Assessment Report

Soil Health Stewardship Session #4 Soil Health: Basics, Practices, Benefits, & Barriers – Part 2 September 8, 2021 1 to 2:45 pm Eastern Sarah Blount – AFT Midwest Conservation Technician & Author, of an Illinois Predictive Assessment

Case Study vs. Predictive Assessment

Case Study

- Used for "soil health successful" farmers
- Retrospective look at alreadyimplemented practices
- Based on available farmer data
- Quantification of the farmerobserved soil health and economic improvements attributable to implementing soil health practices

Predictive Assessment

- Used for "soil health curious" farmers
- Predictive look at practices yet to be implemented (or recently adopted)
- Based a combination of farmer's data and predictive models
- Quantification of the anticipated soil health and economic improvements

Story via Multiple Slides: Zac Weidner, IL

Predictive Assessment: Zac Weidner, Weidner Farms

Resource Concerns

- Soil erosion
- Water holding capacity & infiltration rates
- Nutrient availability

Macoupin County, IL

Farm Size: 540 acres

Study area: 40 field acres

Soil Health Practices Adopted Prior to 2021:

- Reduced tillage before corn
- Nutrient management

New Soils Practices Adopted in 2021 & in Predictive Assessment:

- No tillage before corn
- Cover crop seeding before corn and soybeans
- Remove fall fertilizer from rotation

Connection to AFT:

- Attended 2020 watershed winter meeting
- Read the 4 Midwest Case Studies
- Reached out to get involved with AFT programs & learn about adopting healthy soils practices on his farm

Short-Term Analysis: Zac Weidner, IL

Weidner's Potential Increases in Net Income (Short-Term Analysis)

Positive Effe	ects				
Increase in Income					
ltem	Per Acre	Acres	Total		
None identified	\$0.00	0	\$0		
Total Increased Income			\$0		
Decrease in C	ost				
ltem	Per Acre	Acres	Total		
Machinery cost savings due to no-till	\$6.17	40	\$247		
Herbicide savings for soybeans due to					
cover cropping	\$21.50	20	\$430		
Machinery cost savings due to one less					
fertilizer application	\$12.29	40	\$492		
Fertilizer savings for corn due to					
change in nutrient management	\$9.80	20	\$196		
Work moves from spring to fall (better					
distribution of labor)	\$7.50	40	\$300		
Reduced erosion keeps nutrients in					
field and eliminates field repairs	\$28.88	40	\$1,155		
Total Decreased Cost			\$2,820		
Annual Total In	creased Ne	t Income	\$2,820		
Total Acre	s in this St	udy Area	40		
Annual Per Acre In	creased Ne	t Income	\$71		

Increased Income:

• None anticipated in the short-term

Decreased Costs:

- Reducing tillage reduces fuel, repair, and operating expenses
- Using cover crops reduces the need for herbicide applications
- Fewer machine passes reduces fuel, repair, and operating expenses
- Adding fertilizer at planting eliminates an extra fertilizer pass
- More time to accomplish tasks in fall
- Eliminating field repairs decreases cost for supplies and time

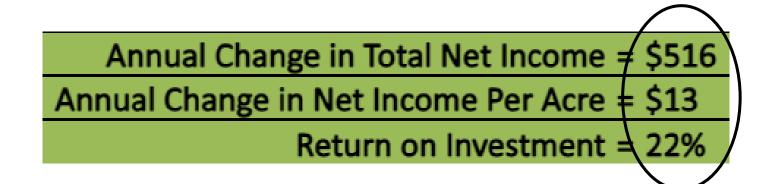
Weidner's Potential Decreases in Net Income (Short-Term Analysis)

Decreased Income:

• None anticipated in the short-term

Increased Costs:

- Learning costs for transitions in soil health management
- Cover crop costs include seed, establishment, and termination costs
- More fertilizer is needed for corn to make up for cover crop nutrient use
- Cost to upgrade planter to 2x2 system
- Cost to install storage tanks on the farm
- Cost to purchase a liquid tender to pull behind planter to feed 2x2 system


Negative Effects							
Decrease in Income							
ltem	Per Acre	Acres	Total				
None identified	\$0						
Total Decreased Income			\$0				
Increase in Co	ost						
ltem	Per Acre	Acres	Total				
Typical learning costs	\$2.81	40	\$112				
Cover crop costs	\$43.70	40	\$1,748				
Increased fertilizer cost for corn due to							
cover crops	\$4.20	20	\$84				
2x2 equipment upgrade	\$4.00	40	\$160				
Liquid storage tanks	\$2.00	40	\$80				
Liquid tender	\$3.00	40	\$120				
Total Increased Cost	Ş5.00	40	\$ <u>2,30</u> 4				
		* In					
Annual Total Dec			\$2,304				
Total Acre		-	40				
Annual Per Acre Dec	creased Ne	et Income	\$58				

In the short-term, Weidner may experience an increase in net returns from his investments in soil health practices

Annual Total Increased Net Income	\$2,820
Total Acres in this Study Area	40
Annual Per Acre Increased Net Income	\$71

Annual Total Decreased Net Income	\$2,304
Total Acres in this Study Area	40
Annual Per Acre Decreased Net Income	\$58



Long-Term Analysis: Zac Weidner, IL

General Info: Data Entry in Weidner's Long-Term Analysis

- Planning horizon chosen
 - 5-year and 20-year
 - Based on enrollment in 3-year side-by-side trial program
- 4% discount rate chosen
- Soil health practices chosen:
 - Cover crops, planted annually
 - Reduced tillage to no tillage
- <u>P-SHEC Tool results</u> =
 - .375% increase in SOM after 5 years
 - 1.496% increase in SOM after 20 years

Yield Data Entry in Weidner's Long-Term Analysis

Cash Crop	Corn	Soybeans
Unit	Bushel	Bushel
Current Average Yield per Acre	210	72
Potential % Increase in Yield due to a 1% Increase in SOM*	8%	12%
Potential % Increase in Yield after 5 years of SH practices	3%	4.5%
Potential % Increase in Yield after 20 years of SH practices	12%	18%
National Crop Price per Unit**	\$3.85	\$8.75

*Weidner chose to select the average of the yield increases reported in the 4 existing case studies

• The user can modify % increase in yield due to SOM change to perform sensitivity analysis

**Based on USDA NASS Crop Values 2019 Summary

Soil Fertility Data Entry in Weidner's Long-Term Analysis

Soil Fertility Inputs

- Price per pound of nutrient from farmer:
 - Nitrogen (\$/Lb.): <u>\$0.28</u>
 - Phosphorus (\$/Lb.): <u>\$0.37</u>
 - Sulfur (\$/Lb.): <u>\$0.54</u>
- Dominant Soil Texture: <u>Silt loam</u>
- P-SHEC Tool Default Nutrient Mineralization Rates
 - Nitrogen (Lb./Ac): <u>18.1</u>
 - Phosphorus (Lb./Ac): <u>1.8</u>
 - Sulfur (Lb./Ac): <u>0.7</u>

Water Storage Benefits: Dryland Farming Drought Resistance

- Historic Yield Loss due to Drought:
 - -15% for corn
 - -60% for soybeans
- Estimated Future Yield Loss due to Drought (after a 1% increase in SOM):
 - -10% for corn
 - -25% for soybeans
- Drought Resistance Benefit:
 - \$40/ac/year for corn
 - \$221/ac/year for soybeans
- Total Average Discounted Water Storage Benefits for Study Area: <u>\$180/year</u>

Weidner's Long-Term Benefit Results

Benefit Category	Per Acre	Affected Acres	Study Area		
Discounted Annual Yield Increase	\$15.33	40	\$613		
Discounted Annual Soil Fertility Benefit	\$1.34	40	\$54	\sum	5-yeai
Discounted Annual Water Storage Benefits	\$1.43	40	\$57	\sum	J yca
Total Annual Long-Term Benefits	\$18.10	40	\$724	\sum	

Benefit Category	Per	Acre	Affected Acres	Study Area	
Discounted Annual Yield Increase		\$48.31	40	\$1,932	\supset
Discounted Annual Soil Fertility Benefit		\$4.22	40	\$169	
Discounted Annual Water Storage Benefits		\$4.49	40	\$180	20-year
Total Annual Long-Term Benefit		\$57.02	40	\$2,281	\supset

- Yield \$613 increase from yield improvements in 5 years, \$ 1,932 increase in 20 years (85% of the increase in net income, based on increases in SOM)
- Soil Fertility Minor increases in net income may occur over 5 and 20 years due to improvements in soil fertility
- Water Storage Minor increases in net income may occur due to water storage capacity improvements, which enhance drought resistance
- Total Discounted Annual Benefits Combined benefits could increase net income by \$18 /acre/year over 5 years and \$57 /acre/year over 20 years

Weidner's Combined Results

5-Year Planning Horizon					
Result Category	Per Acr	e	Affected Acres	Study Area	
Short-Term Annual Change in Net Income		\$13	40	\$516	
Total Annual Long-Term Benefits		\$18	40	\$724	
Total Long-Term and Short-Term Annual Change in Net Income		\$31	40	\$1,240	
Return on Investment		53%			
Number of Years before Break Even		0			
20-Vear Planning Horizon					

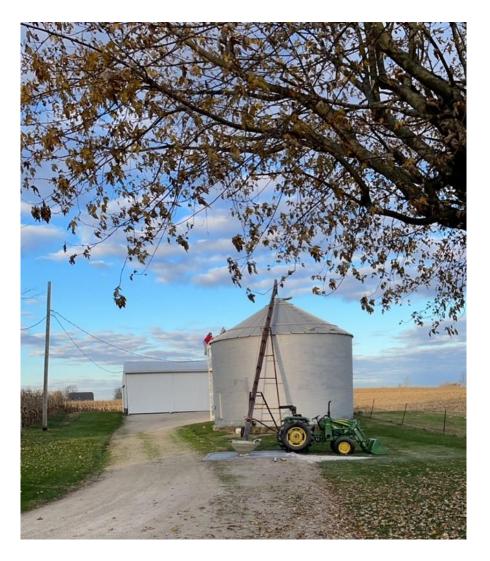
JIL VOOR D	lanning Horizon
	lanning Horizon

Result Category	Per Acre	Affected Acres	Study Area
Short-Term Annual Change in Net Income	\$13	40	\$516
Total Annual Long-Term Benefits	\$57	40	\$2,281
Total Long-Term and Short-Term Annual Change in Net Income	\$70	40	\$2,797
Return on Investment	121%		
Number of Years before Break Even	0		

Barriers Overcome

Barriers Didn't Materialize

• Financial barriers


 Didn't feel they needed to apply for financial assistance because they wanted to do it alone

• Technical assistance barriers

• Used ag retailers and AFT to answer questions on cover crop seeding information and 2x2 equipment choices

• Technological barriers

 Overall, had good experiences with implementing nutrient management and cover crop practices

Take Home Messages: Zac Weidner, IL

Highlights: Zac Weidner Predictive Assessment

SOIL HEALTH PREDICTIVE ASSESSMENT SUMMARY REPORT

For: Zac Weidner Date: March 2, 2021 By: Sarah Blount Midwest Conservation Technician (765) 256-0660; sblount@farmland.org

FARM DESCRIPTION

Zac Weidner owns and farms 540 acres in western Macoupin County, IL in close cooperation with his father. Together, they farm 1,400 total acres, sharing equipment, labor, and ideas. These acres fall within the Upper Macoupin Creek watershed, a HUC 10 watershed that flows to the Macoupin Creek, then the Illinois River, and ultimately the Mississippi River. Zac is a cornsoybean rotation farmer who wants to incorporate cover crops into much of his acreage. The topography is mostly flat, with a few fields having slight hills. The study area, or focus field, is a 40-acre flat and moderately to poorly drained field named "Janet's 40." Soil types for the study area include Cowden, Fishhook, Harrison, and Marine (all silt loam) and Virden (a silt clay loam). The percent Soil Organic Matter (SOM) is 3.317%.

CURRENT AND PLANNED PRACTICES IN THE STUDY AREA

In addition to cover cropping, Zac is interested in switching completely to no-till before corn planting and improving his nutrient management practices by no longer fertilizing in the fall.

Conservation Practices		Corn	Soybeans	
Tillerer	Current	Reduced, vertical tillage	No-till	
Tillage	Planned	No-till	(No change)	
	Current	None	None	
Cover Crops	Planned	Fall planting legume-cereal mix, spring termination using combination of spray and roller crimper	Fall planting of cereal-brassicas mix, spring termination using combination of spray and roller crimper	
Nutrient	Current	Fall Anhydrous Ammonia, dry spring fertilizer spread before planting, dry spring side-dress application	Dry spring fertilizer spread before planting	
Management	Planned	Dry spring fertilizer spread before planting, liquid 2x2 application with planter pass, and dry side-dress at appropriate V-stage	(No change)	
	Current	Corn -	-Soybean	
Crop Rotation	Planned	Corn – Cover Crop – Sovbean – Cover Crop		

Table 1: Current and Planned Soil Health Management Strategy

Estimates of Soil Health Educational Time Needed: A default estimate of \$2.81 per acre was used for cropland and is based on the average per acre costs reported by farmers in AFT's 7 Row Crop Soil Health Case Studies (2019 & 2020).

- Zac recently adopted no till before corn, cover crop seeding before corn and soybeans, and avoidance of fall fertilizer from rotation
- Trying the practices & the predictive estimates helped Zac accomplished his goal to convince Dad to use cover crops and reduce tillage
- Short-term predictive estimates:
 - 22% ROI & \$13/ac
- Long-term predictive estimates :
 - 5-year
 - 53% ROI & \$31/ac
 - 20-year
 - 121% ROI & \$70/ac

