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1. Introduction  

This document describes the methods used to generate projections of future urban 

development in support of American Farmland Trust’s Farms Under Threat (FUT) data series 

and assumes basic familiarity with past FUT research products and reports.  The data developed 

for this analysis aim to project the conversion of land from agricultural uses (i.e., croplands, 

pastureland, rangeland, and woodland associated with farms) to Urban and Highly Developed 

(UHD) and Low-Density Residential (LDR) land uses by the year 2040, relative to a 2016 

baseline.  The key data layers produced and described are as follows:  

• UHD suitability layer (0-1): the location’s urban development potential 

• 2040 BAU UHD allocation (0 or 1):  The specific locations that are most likely to be 

converted to UHD under a Business-as-Usual development demand scenario 

• 2040 BAU LDR allocation (0 or 1):  The specific locations that are most likely to be 

converted to LDR under a Business-as-Usual development demand scenario 

• 2040 BBC UHD allocation (0 or 1):  The specific locations that are most likely to be 

converted to UHD under a Best-Built-Cities development demand scenario 

• 2040 BBC LDR allocation (0 or 1):  The specific locations that are most likely to be 

converted to LDR under a Best-Built-Cities development demand scenario 

• 2040 RS UHD allocation (0 or 1):  The specific locations that are most likely to be 

converted to UHD under a Runaway-Sprawl development demand scenario 

• 2040 RS LDR allocation (0 or 1):  The specific locations that are most likely to be 

converted to LDR under a Runaway-Sprawl development demand scenario 

• 2040 FP UHD allocation (0 or 1):  The specific locations that are most likely to be 

converted to UHD under a Farmland-Protection development demand scenario 

• 2040 FP LDR allocation (0 or 1):  The specific locations that are most likely to be 

converted to LDR under a Farmland-Protection development demand scenario 

• FP layer (0 or 1):  The specific locations of farmland parcels to be protected 

 

In this technical report, we focus mainly on the methods and validation for the Business-as-Usual 

(BAU) scenario, as it provides the baseline approach for all scenarios and results.  

https://farmland.org/project/farms-under-threat/
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2. Methods 

We assumed that a non-urban location being converted to urban land use is a function of 

the location’s urban development potential (development suitability), development restrictions 

(e.g. protected or reserved for non-urban purposes), historical conversion rate (transition 

probability), and urban land demand (land increase for urban uses) (Chen et al. 2020; Seto et al. 

2012). We specifically modeled two types of threats to agricultural land use: urban and highly 

developed (UHD) and low-density residential (LDR) land uses. These definitions were adopted 

from the Farmland Under Threat (FUT) layers created by American Farmland Trust (AFT) and 

Conservation Science Partners (CSP) (Freedgood et al. 2020; Sorensen et al. 2018). In general, 

UHD reflects developed lands classified as open spaces and low- to high-intensity urban land 

uses in USGS’s National Land Cover Database (NLCD), whereas LDR refers to non-urban lands 

within U.S. Census Blocks with average acres-per-housing-unit smaller than approximately the 

10th percentile of the farm size distribution for each county. In these low-density residential 

areas, we assume that agricultural lands that remain are under threat due to their proximity to 

residential areas, as the options for agricultural production may be increasingly limited or they 

could be further developed unless restrictive zoning or permanent protection is applied. For more 

information on the definitions of UHD and LDR, the processes for classifying them, and the 

reasoning behind such delineations, see the previous FUT technical report 

(https://s30428.pcdn.co/wp-

content/uploads/sites/2/2021/06/AFT_CSP_FUT_Technical_Doc_2020.pdf).  

Using this land classification framework, AFT identified and documented locations 

where conversion to UHD and LDR occurred from 2001 to 2016 (Freedgood et al. 2020). In this 

report, we projected continued conversion to UHD and LDR land uses between 2016 and 2040.  

In general, there are four steps involved in our projection process: (1) estimating demand for new 

UHD and LDR lands between 2016 and 2040, (2) creating suitability layers, (3) generating 

probability layers, and (4) conducting spatial allocation (Figure 1). We modeled UHD and LDR 

development under four different scenarios: Business-as-Usual (BAU), Runaway-Sprawl (RS), 

Better-Built-Cities (BBC), and Farmland Protection (FP). Except for the FP scenario that was 

conducted for ten select metropolitan areas, all other scenarios were modeled for the entire 

contiguous U.S. See SCENARIOS section of AFT’s report, Farms Under Threat 2040: Choosing 

an Abundant Future, for more information about scenario design. We implemented all models at 

the level of counties at a spatial resolution of 30 meters on Google Earth Engine (GEE).  

 

https://s30428.pcdn.co/wp-content/uploads/sites/2/2021/06/AFT_CSP_FUT_Technical_Doc_2020.pdf
https://s30428.pcdn.co/wp-content/uploads/sites/2/2021/06/AFT_CSP_FUT_Technical_Doc_2020.pdf
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Figure 1. Framework of the modeling methods. (1) projecting demands, (2) calculating 

development suitability, (3) creating urban development probability, and (4) generating binary 

UHD and LDR projections. UHD: urban and highly developed; LDR: low-density residential. 

 

2.1. Projecting urban land demands 

In the BAU scenario, development remains on the same trajectory as that from 2001-

2016, as documented in Farms Under Threat: The State of the States (Freedgood et al. 2020), 

driven by existing land-use policies and consumer preferences. For each county, we estimated 

UHD demand in 2040 (devDemanduhd) as:  

𝑑𝑒𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑢ℎ𝑑 = 𝑢ℎ𝑑𝐼𝑛𝑐𝑅𝑎𝑡𝑒2001−2016 ∗ 24 ∗ 𝑎𝑑𝑗𝐹𝑎𝑐𝑡𝑜𝑟                           (1) 

where uhdIncRate2001-2016 is the average annual UHD increase of a county from 2001 to 2016 

(i.e., total UHD increment divided by 15), adjFactor is the state-level adjusting factor that is 

used for all counties within a state, and the number 24 refers to the number of years between 

2016 and 2040. We used a population change-driven adjusting factor to reflect possible 

variations in urban development trajectories because 1) population increase is a good 

indicator of high-density urban development (e.g., more buildings are needed to house 
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growing population) (Left inset of Figure 2), and 2) other indicators like gross domestic 

product (GDP) are not available at the scales needed. The adjusting factor was calculated as: 

𝑎𝑑𝑗𝐹𝑎𝑐𝑡𝑜𝑟 =  1 +  𝑟 ∗  0.1                                           (2) 

where r is the relative change rate of population growth between 2016-2040 and 2001-2016: 

𝑟 =  (𝑝𝑜𝑝𝐼𝑛𝑐𝑅𝑎𝑡𝑒2016−2040 — 𝑝𝑜𝑝𝐼𝑛𝑐𝑅𝑎𝑡𝑒2001−2016)/𝑎𝑏𝑠(𝑝𝑜𝑝𝐼𝑛𝑐𝑅𝑎𝑡𝑒2001−2016)     (3) 

where popIncRate is the average annual population increase (i.e., total population 

growth during a period divided by the number of years). Population estimates for the 

years 2001 and 2016 were from U.S. Census Bureau 

(https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-

state.html and https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-

total.html), and the state-level population projections are from Weldon Cooper Center 

for Public Service, University of Virginia (see details here: 

https://demographics.coopercenter.org/national-population-projections/). Note that both 

projections consider domestic and international population migrations, but it is unclear 

whether and to what extent these predictions specifically include climate change-

induced migration.  However, because both datasets use the population census as 

reference, we assumed the estimates and projections are consistent and compatible 

across states and time.  

The adjusting factor is calibrated by state given the lack of county-level population 

projections. This procedure of UHD demand estimation reflects the projected change in 

population growth rate, but it is also designed to not substantially over- or under-estimate 

future UHD needs. For example, if a state is projected to see 50% faster population growth in 

2016-2040 than it did in 2001-2016, the UHD conversion rate would increase by 5%. As a 

result, the adjustment factor ranges from 0.8 to 1.1 for all states except for West Virginia, 

which has the largest projected decline in population growth rate (adjustment factor is 0.54).  

Because LDR is usually near existing UHD, it is more likely to be urbanized than 

non-LDR land uses. We thus divided UHD demand into two components – LDR-to-UHD 

and non-LDR-to-UHD, so that future UHD development would occur on LDR at an 

appropriate rate. Assuming that the proportion of UHD development on LDR (compared to 

the total UHD development) remains unchanged from 2001-2016 to 2016-2040, the amount 

of future LDR-to-UHD conversion was estimated as: 

𝑑𝑒𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑙𝑑𝑟2𝑢ℎ𝑑 = 𝑑𝑒𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑢ℎ𝑑  ∗  𝑝𝑟𝑜𝑝𝑙𝑑𝑟2𝑢ℎ𝑑                           (4) 

https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-state.html
https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-state.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://demographics.coopercenter.org/national-population-projections/
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where propldr2uhd is the proportion of UHD development on LDR from 2001 to 2016. 

Subsequently, the amount of non-LDR-to-UHD conversion was calculated as devDemanduhd 

– devDemandldr2uhd. 

We used a similar method to estimate future LDR demand per county as:  

𝑑𝑒𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑙𝑑𝑟 = 𝑙𝑑𝑟𝐼𝑛𝑐𝑅𝑎𝑡𝑒2001−2016 ∗ 24                           (1) 

where ldrIncRate2001-2016 is the average annual LDR increase of a county from 2001 to 2016 

(i.e., total LDR increment divided by 15). However, we did not apply a population-driven 

adjusting factor for LDR demand estimation because LDR increases were found to have a 

weak relationship with population change (Right inset of Figure 2). Other important variables 

like farm distribution and farm size in 2040 were not available at the time of conducting this 

research. 

 

Figure 2. State-level relationships between population growth and urban area increases during 

2001-2016 (Left: urban and highly developed; Right: low-density residential). 

 

By using BAU estimation as the reference, we then estimated UHD and LDR demands 

for each scenario proportionally based on the conditions in Table 1. For the RS scenario, we kept 

UHD demand the same as in the BAU but increased LDR demand by 50%.  For the BBC and FP 

scenarios, we reduced UHD and LDR demand by 25% and 50%, respectively. See SCENARIOS 

section of AFT’s Report for more information about rationales for these settings. 
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Table 1. Modeling assumptions for the four scenarios. 

Scenario Rate of UHD 

conversion 

Rate of LDR 

conversion 

Farmland protection 

Business as Usual  Historical rate, 

adjusted for future 

population growth 

Historical rate No new farmland protection 

Runaway-Sprawl Same as BAU 50% more than 

BAU 

No new farmland protection 

Better-Built-Cities 25% less than BAU 50% less than 

BAU 

No new farmland protection 

Farmland-Protection 25% less than BAU 50% less than 

BAU 

New protection applied to 

10% of agricultural lands in 

each metropolitan area 

 

2.2. Creating development suitability layers 

We estimated development suitability for each pixel within a county on a scale of 0 to 1 

(higher values imply more suitable for development), with the potential for a location to be 

urbanized defined by a set of spatial and socioeconomic determinants (Table 2). Predictor 

variables included terrain, relationships to existing urban areas, transportation networks, water 

resources, other land resources (e.g., protected natural resources), urban fraction within a pre-

defined buffer, land value, and nighttime light intensity (to account for scale-dependent effects of 

urban development, e.g., urban development can be more likely to occur around large cities for 

some counties).  

We built the UHD suitability layer from these estimators by employing random forest 

classifiers (Breiman 2001). We did not create a specific LDR suitability layer because: (1) LDR 

is defined by farm size data that is not available for the year 2040 and (2) LDR has a high 

probability to be converted to UHD (i.e., UHD suitability is a strong indicator for LDR 

development). The computation of suitability layers was conducted per county. For each county, 

UHD and non-UHD training samples were randomly stratified from FUT and NLCD 2016 

layers.  We tested a series of sample sizes (from 50 to 1000 for each class with the increment of 

50) for classifier training. While too dense of a sampling scheme can result in a problem of over-

fitting the model, too few samples can exaggerate projections. After testing, we found reasonable 
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results (based on visual inspection) were achieved using 400 samples (200 for each class) per 

county. County-specific random forest classifiers trained from stratified samples and predictor 

variables were then used to calculate UHD suitability layers. For counties with small UHD area 

in 2016 (i.e., smaller than 2 km2), state-level classifiers were trained and applied with 2,000 

samples for each class. The county-level suitability layers were then mosaicked to create a 

nationwide map. 

As sample size and location is critical to image classification as well as to estimate 

suitability in this study, we repeated the procedure of sample stratification and suitability 

calculation 100 times. As a result, we created 100 nationwide suitability layers, which were then 

averaged to generate the mean suitability layer (see Figure 3 for an overview of UHD 

suitability). This final suitability layer was later used in the next steps of estimating development 

probability and spatial allocation  

 

Table 2. Socioeconomic and physical variables used to estimate urban development suitability. 

Variable name  Abbreviation Spatial 

resolution 

Year of 

data 

Data sources 

Nighttime light intensity ntl 500 m 2016 NOAA NPP/VIIRS 

Land value landVal 480 m 2010 Nolte (2020) 

Elevation elevation 30 m 2000 NASS Shuttle Radar 

Topography Mission 
Slope slope 30 m 2000 

Distance to existing urban 

boundary  

dist2urBound 30 m 2016 FUT2016 and 

NLCD2016 

Distance to primary roads  dist2priRd 30 m 2016 
TIGER: US Census 

Roads 
Distance to secondary roads  dist2secRd 30 m 2016 

Distance to water bodies  dist2water 30 m 2016 NLCD2016 

Size of the closest urban 

cluster 

urSize 30m 2016 FUT2016 
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Urban fraction within a 1 km 

* 1km buffer 

urRatio 1 km 2016 NLCD2016 

Distance to forest dist2forest 30 m 2016 NLCD2016 

Distance to protected ag land dist2Pal 30 m 2016 AFT PALD 

Distance to protected areas dist2pad 30 m 2019 PAD-US 

 

 

Figure 3. Overview of UHD suitability (black to white pixels represent low to high values; gaps 

occur where suitability is zero). 

 

2.3. Development restriction layers 

Certain land uses are assumed unlikely to be urbanized. These areas were removed from 

the suitability layer before conducting spatial allocation. In this study, development restrictions 

included existing UHD, federal lands, protected agricultural lands, Protected Areas Database of 

the U.S. (USGS PAD-US v.2.1), wetlands (only for UHD allocation), and water bodies. The 

extent of UHD, federal lands, wetlands, and water bodies were derived from FUT and NLCD 

2016, and protected agricultural lands dataset (PALD) and PAD-US were from AFT and USGS, 

respectively. 
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In addition to these areas, forestlands within residential areas tend to remain unchanged 

given their importance to the living environment (e.g., reduced urban heat island, ecological and 

aesthetic values, etc.) (Nowak et al. 2008; Tyrväinen et al. 2003; Ziter et al. 2019) (Figure 4). 

However, residential forestlands are usually classified as LDR in FUT layers and are close to 

UHD, making them likely to receive high suitability values. To reserve these LDR areas, we 

developed a set of rules to identify them using random forest classifier. We first calculated the 

proportion of each US Census Block that was in LDR and other land cover/use classes (derived 

from FUT and NLCD layers). We then calculated maximum vegetation greenness in each 

Census Block for the years 2001 and 2016. To calculate vegetation greenness of a block, we first 

computed a layer of yearly maximum NDVI from all available Landsat images within a year 

(i.e., 2001 and 2016), which was then aggregated as the mean value of all pixels within the 

block. Blocks with and without LDR-to-UHD conversion during the period of 2001-2016 were 

then marked and used as reference to train state-wise random forest classifiers. Predictors 

included land use types and densities and vegetation greenness of the year 2001. The trained 

classifiers were later applied to 2016 predictors to predict LDR blocks likely to remain stable 

from 2016 to 2040. The detected stable LDR blocks were subsequently used as an additional 

restriction layer for 2040 UHD projection in a similar manner to the layers of protected 

agricultural lands and existing UHD extent. 

For the FP scenario, we also projected future agricultural lands most likely to be 

protected and used these areas as an additional restriction layer. We purposely protected 10 

percent of the most productive agricultural lands within each city/metropolitan area that are near 

existing agricultural land parcels under protection to represent the organizational goal of AFT. 

We assumed that highly important agricultural lands close to existing protected ones are more 

likely to be protected from future urbanization. For our proximity measure, we used an inverse 

distance weighting strategy and constrained this limit to 3 miles, such that the proximity value 

was set to 0 if a land parcel is beyond 3 miles of an existing protected one. Land importance was 

represented by the productivity, versatility, and resiliency (PVR) value, which is a combination 

of soil suitability, crop type and growing season length, and land cover/use type (see AFT PVR 

report for more details). Proximity and PVR were then integrated using the weights 0.2 and 0.8, 

respectively, as determined by a panel of experts (0.2 × proximity + 0.8 ×PVR). Finally, a series 

of thresholds were applied to the integrated indicator until the 10 percent protection area was 

achieved. Note this analysis was conducted at the land parcel level derived from Loveland Parcel 

Dataset (https://regrid.com/parcels).  

 

https://s30428.pcdn.co/wp-content/uploads/sites/2/2020/05/AFT_FUT_PVR_Fact_Sheet.pdf
https://s30428.pcdn.co/wp-content/uploads/sites/2/2020/05/AFT_FUT_PVR_Fact_Sheet.pdf
https://regrid.com/parcels
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Figure 4. Residential forestlands northeast of Atlanta (highlighted in black rectangle, classified 

as LDR in FUT layers) that tend to remain unchanged in UHD development. OS: developed, 

open space, LI: developed, low intensity, MI: developed, medium intensity, HI: developed, high 

intensity, DF: deciduous forest, EF: evergreen forest, MF: mixed forest.  

 

2.4. Creating development probability layers 

Development probability is defined as the product of suitability and historical land use 

conversion rate (transition probability). We calculated the transition probability statistics at the 

county level based upon the actual conversion rate of each non-urban land use to urban use 

between 2001 and 2016 using FUT and NLCD layers.  For each county, we calculated the 

amount of conversion to UHD of each land use in proportion to its total area from 2001 to 2016, 

including LDR, cultivated lands, forest, herbaceous, wetlands, bare land, and water bodies. 

Because LDR is an integrated class that covers all other land uses except for UHD, we further 

calculated transition probability of each land use within LDR.  

The calculation of transition probabilities for each county was conducted only within the 

peri- to urban areas as defined by nighttime light brightness greater than 1. The reasons for this 
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design are twofold. First, area of land uses can vary substantially within a county (e.g., some 

midwestern counties are dominated by croplands), which would lead to extremely higher or low 

transition probability if all land uses within the target county are counted. In fact, land uses 

remote from urban areas tend to remain unurbanized and should have low transition probability. 

Second, artificial nighttime lights were used to delineate urban and peri-urban boundaries 

because they have high correlations with human activities including urban extent (Elvidge et al. 

1997; Sutton et al. 2007; Xie et al. 2019). The brightness threshold of 1 was used to cover the 

majority of 2016 LDR and UHD extent and remove possible background noise (i.e., small 

brightness for unlit areas due to systematic errors).  

 

2.5. UHD and LDR projections 

We projected the location of future UHD development using a pixel-based thresholding 

method. The projections of LDR-to-UHD and non-LDR-to-UHD were conducted separately due 

to the unique characteristics of LDR compared to other non-LDR land uses. After UHD 

allocation, the location of LDR development was estimated using a block-based thresholding 

method to maintain consistency with previous FUT approached and datasets. For each scenario, 

UHD and LDR development were assigned according to the associated level of urban demand.  

All projections were county-stratified and subsequently mosaiced to nationwide maps.  

 

2.5.1. Allocation of UHD development 

To estimate where LDR will be converted to UHD development, a county-stratified, 

pixel-based thresholding method was applied. After removing development restriction areas 

(Section 2.3) from the probability layer (Section 2.4), spatial allocation was applied based on 

pixel values and urban development demand from LDR (Section 2.1), i.e., locations with higher 

probability values are urbanized earlier than low value pixels. A series of thresholds (from 0 to 1 

with step of 0.002) were used to segment the probability layer until the amount of LDR to UHD 

conversion was met, which resulted in a binary map showing whether a LDR pixel is projected 

be developed or not. For each block having LDR in 2016, the maximum proportion of 

conversion to UHD was set as the 75 percentiles of the observed 2001-2016 rate of all LDR 

blocks with LDR-to-UHD conversion within the county. This spatial allocation of LDR-to-UHD 

conversion was constrained to the 2016 LDR extent. 

A similar approach was used to allocate non-LDR-to-UHD conversion, but the projection 

was conducted within the 2016 non-LDR extent. The two binary projections (i.e., LDR-to-UHD 

and non-LDR-to-UHD) were then combined to generate a complete map of UHD projection.  
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2.5.2. Allocation of LDR development 

To be consistent with the 2001 and 2016 FUT layers, LDR projections were conducted at 

the U.S. Census block level. After allocating UHD locations, we calculated block-level LDR 

probabilities as the median value of UHD suitability of remaining undeveloped and available 

land within census blocks.  That is, we excluded existing UHD, LDR, restriction areas, and 

projected UHD and then calculated the suitability for remaining block area to identify the 

location’s likelihood for LDR growth. Finally, we implemented a probability layer-based 

thresholding method to predict specific locations where LDR development are most likely to 

occur in 2040. Like UHD projections, the thresholding method tested a series of thresholds per 

county until the LDR demand was met, with the amount of residual demand allocated to most 

probable remaining block. All county-wide projections were finally mosaiced to a nationwide 

map. 

 

3. Model validation 

We first evaluated our projected UHD and LDR maps through discussions and visual 

evaluation, including by AFT’s regional experts across the country. In particular, we visually 

assessed the location, size, and pattern of projected urban clusters based on high-resolution aerial 

photography, thematic land use maps, and knowledge of local to regional urban environments. 

While this visual assessment was able to inform our understanding of the reliability and 

robustness of our models and projections, quantitative evaluation of the 2040 BAU projections 

and other scenario models was not possible due to lack of (future) reference data.  

Thus, to also quantitatively evaluate our BAU model performance, we compared 

projected urban development with actual growth for the period 2001 to 2016. Using 2001 as the 

baseline year and observed change from 2001-2016 for demand, we first ran the BAU scenario to 

estimate the locations of UHD and LDR growth between 2001 and 2016. This projected 2001-

2016 urban growth based upon our developed model was then compared with reference urban 

growth observed by FUT 2001 and 2016 layers.  

Ten cities/metropolitans were selected across the country to conduct pixel-wise site-

specific locational accuracy assessment (Figure 5). They were selected to represent diverse 

biophysical and socioeconomic conditions of cities across the country and to target locations 

where AFT and CSP researchers are familiar. For each city/metropolitan area, we randomly 

selected 1000 30-m locations (500 each for change and non-change categories) and calculated 

accuracy metrics of overall accuracy (OA) and F1 score (Powers 2020). The stable UHD extent 

was removed from the non-change class, as UHD remains unchanged after being built and 

including it in the assessment would artificially increase the apparent reliability of our models. 
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𝑂𝐴 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
                                               (3) 

 

𝐹1 =
2∗𝑈𝐴∗𝑃𝐴

𝑈𝐴+𝑃𝐴
                                                                   (4) 

 

where UA and PA refer to User’s Accuracy and Producer’s Accuracy of the UHD/LDR class, 

respectively. 

 

 

Figure 5. Distribution of 10 selected cities/metropolitans for accuracy assessment. 

 

4. Results and discussion 

4.1. Evaluation of BAU models  

Running our models for the year 2016 results in similar patterns of urban development as 

compared with FUT-derived reference maps (Figure 6). Quantitatively, our modeling framework 

can predict UHD growth with reasonable overall accuracy of 67.1% and F1 score of 0.51 (Table 

3). In general, the accuracies of UHD projection vary across cities/metropolises. The highest 

accuracies are achieved for Boise City-Nampa, Washington-Arlington-Alexandria, Austin-
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Round Rock, and Chicago-Naperville-Elgin regions, with accuracies upwards of 70% and F1 

scores close to or higher than 0.6. In contrast, accuracies are the lowest for Pittsfield and 

Buffalo-Cheektowaga areas (56-57%), with F1 scores only slightly above 0.2. 

The estimation of LDR development is less reliable compared with UHD but still yields 

an overall accuracy over 60%. Given the variety of land use compositions within modeling 

regions, a high UHD estimation for a city/metropolitan area is not an assurance of high accuracy 

for its LDR projection. For example, Atlanta-Sandy Springs-Alpharetta has the highest LDR 

projection accuracy (F1 score of 0.57) but is middle-of-the-road for UHD projection accuracy. 

The lowest LDR accuracies were achieved in Fresno and the Madison-Milwaukee Corridor (F1 

score of 0.12 and 0.25, respectively). 

Note, however, these results reflect the accuracy of UHD and LDR growth instead of 

their total extent.  Estimating growth (a dynamic land use class) is more difficult than estimating 

total extent (where most land is static) but gives a better indication of the model’s performance in 

estimating agricultural land conversion, which is our output of interest.  Given 1) the complexity 

of driving forces of urban development, 2) limited data availability for some variables needed to 

predict UHD and LDR (e.g., farm size), and 3) inherent uncertainty in making future predictions 

(Liu et al. 2017; Sohl et al. 2017), the achieved accuracies should be considered both sufficient 

and appropriate for making future projections to inform land conservation and prioritization.  For 

reference, commonly acceptable accuracies for the historic detection of dynamic, remotely 

sensed land cover change classes are often between 60 to 70%.  Thus, achieving a similar level 

of overall accuracy for the prediction of change should meet or exceed performance 

requirements for most applications of this data. 
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Figure 6. Comparison of projected and actual growth of urban and highly developed (UHD) and 

low-density residential (LDR) between 2001 and 2016 for 10 select cities/metropolitans.  
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Table 3. Accuracy assessment of projected UHD growth from 2001 to 2016 compared to actual 

changes. 

 UHD  LDR 

Cities/metropolitans OA (%) F1 score  OA (%) F1 score 

Madison-Milwaukee 

Corridor, WI 
66.6 0.51 

 
56.8 0.25 

Raleigh-Durham-Cary, NC 68.5 0.55  65.3 0.50 

Austin-Round Rock, TX 70.3 0.59  58.4 0.34 

Fresno, CA 67.3 0.52  52.9 0.12 

Boise City-Nampa, ID 76.0 0.68  59.3 0.32 

Pittsfield, MA 56.2 0.22  61.9 0.40 

Chicago-Naperville-Elgin, 

IL-IN-WI 
70.1 0.59 

 
57.7 0.30 

Atlanta-Sandy Springs-

Alpharetta, GA 
66.0 0.52 

 
67.5 0.57 

Buffalo-Cheektowaga, NY 57.0 0.26  63.4 0.45 

Washington-Arlington-

Alexandria, DC-VA-MD-WV 
72.6 0.63 

 
62.0 0.43 

Average 67.1 0.51  60.5 0.37 

 

4.2. Spatial patterns of BAU projections 

The projected 2040 BAU UHD and LDR development in Figure 7 shows that our 

proposed model provides reasonable urbanization patterns. Our maps show that future urban 

development will occur in suburban to peri-urban areas where developable lands are available 

and close to existing low- to high-density built-up areas and transportation networks. 
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Our BAU projections see diverse local to nationwide urban growth by 2040. If urban 

development continues at the same pace as that in 2001-2016, our modeling shows additional 9.5 

million acres of UHD development, with 6.2 million occurring on agriculutral land nationwide. 

Notable UHD increases are projected to occur especially in the Southeast, Texas, and California 

(Figure 8a). Despite their already being highly urbanized, several metropolitan areas in these 

states would continue to expand such as Riverside-San Bernardino-Ontario, CA, Dallas-Fort 

Worth-Arlington, Houston-The Woodlands-Sugar Land, and Austin-Round Rock-Georgetown of 

TX, Orlando-Kissimmee-Sanford, FL, Atlanta-Sandy Springs-Alpharetta, GA, and Raleigh-

Cary, NC.  

Arizona, Illinois, Tennessee, and South Carolina will also see increases of 250-350 

thousand acres. Metropolitan areas like Pheonix-Mesa-Chandler, AZ, Chicago, IL, Nashville, 

TN, and Greenville, TN will experience the largest UHD gains in these states. In addition, we 

find several cities/metropolitan areas with sizeable UHD expansion in the Midwest and Eastern 

US, including Minneapolis-St. Paul-Bloomington, MN-WI, Milwaukee-Waukesha, WI, 

Columbus, OH, and Washington-Arlington-Alexandria, DC-VA-MD-WV. With the exceptions 

of California and Arizona, most other western states show relatively small UHD increases, 

ranging from <50 to 250 thousand acres.  

Accompanying the high-density urban development, our BAU projections also show an 

additional 21.1 million acres of land that will be converted to LDR use. Compared to UHD, LDR 

projections show a higher contrast between the Western and Eastern US (Figure 8b). Texas and 

North Carolina show the most LDR development, with increases of >1.5 million acres, followed 

by Georgia, Tennessee, and Virginia of 0.9-1.5 million acres, and the Midwest (Minnesota, 

Wisconsin, Michigan, and Missouri) and some Southeast states (South Carolina, Alabama, 

Mississippi, and Florida) of 0.3-0.9 million acres. 

Lastly, as climate change continues, it will likely affect the patterns of land use change 

we project here.  For example, sea-level rise may displace a portion of current populations and 

developed land, resulting in altered development patterns.  In the online data associated with this 

report, maps of locations likely to be affected by climate-induced sea-level rise by the year 2040 

are available to overlay with the projected UHD and LDR development layers to help initially 

assess and visualize these interactions.  Further information on such projected climate impacts, 

including the methods used to project sea-level rise, are detailed in the accompanying report 

entitled “Description of the approach, data and analytical methods used for the Farms Under 

Threat 2040 projections of climate-related crop and land-use suitability, and sea-level rise.”   
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Figure 7. Projected urban and highly developed (UHD) and low-density residential (LDR) 

growth by 2040 under the Business-as-Usual scenario. 

 

 

 

Figure 8. Projected per state (a) urban and highly developed (UHD) and (b) low-density 

residential (LDR) growth by 2040 under the Business-as-Usual scenario. 
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