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Introduction: 
During the next few decades, millions of acres of solar energy installations will be installed in the U.S. as 
the country transitions to renewable energy (Cole et al. 2020). To better understand the potential 
impacts of rapid solar expansion on U.S. farmlands and ranchlands, American Farmland Trust, as part of 
the Farms Under Threat initiative, developed a model to illustrate future patterns of solar siting and 
inform solar siting policies and practices. The predictive analysis uses state-level 2040 solar demand data 
for the contiguous U.S. from the National Renewable Energy Laboratory’s Regional Energy Deployment 
System (ReEDS) model Mid-case Scenario dataset (Cole et al. 2020, Brown et al. 2020).  
 
The resulting projection model places new solar development based on a technical 
suitability/conditional transition probabilities map and other land-use characteristics derived from 
historical use patterns. It determines demand, spatial suitability, spatial attributes (size, shape, and 
density), and transition rates (how likely a given land use is to be developed) for solar development on a 
per-pixel basis within seven distinct regions throughout the contiguous United States. We inputted the 
demand, suitability, spatial attributes, and transition rates into a coupled Markov-cellular automata 
spatial allocation procedure using Dinamica EGO.  
 
We integrated the solar projection with the Farms Under Threat 2040 (FUT2040) future urban 
development modeling, which projects new urban and highly developed (UHD) and low- density 
residential (LDR) land uses from 2016-2040 (Xie et al. 2022). An estimate of projected UHD and LDR 
areas was used to mask the landscape. We then applied the solar model to determine areas for new 
solar development. While this does not perfectly reflect the way that these three land uses interact in 
the real world, it simplifies the modeling process and avoids potential conflicts that could result in 
unrealistic landscape patterns. The resulting maps illustrate likely patterns for the future deployment of 
large-scale solar. They allowed us to quantify the agricultural lands under these installations and 
determine how much is Nationally Significant farmland (Freedgood et al. 2020), the nation’s best land 
for long-term production.  
 
Regional Framework for Modeling: 
Predictive land-use models are most useful when their parameters are reflective of the unique 
characteristics of landscapes within ecologically and/or geographically similar regions. In the context of 
solar development, it is important to capture the variation observed in the types, quantities, patterns, 
and locations of solar development among different areas of the country. Since past solar development 
is somewhat limited, we aggregated the lower 48 states into seven larger geographical regions to 
adequately project solar suitability characteristics in areas where there is currently limited – or no – 
solar development (Table 1). Deploying these models at regional scales helps to capture localized 
development patterns that might otherwise be missed if modeled at the national level. However, state-
level demand from the ReEDS model was used to determine the amount of solar projected in each state. 
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Table 1: Solar Model Regional Framework 
 

Region States 
Appalachia KY, NC, TN, VA, WV 
Great Lakes IA, IL, IN, OH, MI, MN, MO, WI 

Mountain Plains AZ, CO, ID, KS, MT, ND, NE, NM, NV, SD, UT, WY 
Northeast CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT 

Pacific CA, OR, WA 
Southeast AL, FL, GA, SC 

Southern Delta AR, LA, OK, TX, MS 
 
 
Detailed Modeling Methods: 
 
Solar Siting Markov-Cellular Automata Model Schema: 
Markov chains are commonly used to forecast future land-use change (e.g. Keshtkar & Voigt 2016). 
Typically, multiple years of static historical land-use data are used as inputs to compute past land-use 
transitions and transition rates. These observed transitions are then extrapolated to simulate likely 
future land-use transitions within a specified time interval (e.g. 1-year, 5-year, or 10-year intervals) 
based on conversion probabilities and rates for each unique land-use type. While Markov chain models 
can predict the amount of land-use change that is likely to occur through time, they do not capture the 
complex and heterogeneous patterns that are inherent in human-dominated environments (see 
Cadenasso et al 2007 for a primer on land cover heterogeneity). To address the issue of pattern, Markov 
models are often coupled with patch-based cellular automata (CA) models, which are fundamentally 
spatially explicit and do account for the complexities of land-use spatial patterns (Meentemeyer et al. 
2013). In essence, coupled Markov-CA models account for both amounts through time (Markov chain 
transition probabilities) and spatial patterns (patch-CA) and are meant to be a holistic method for 
forecasting future land change. 
 
To build a national-scale predictive solar model, we applied coupled Markov-CA modeling methods that 
predict and allocate new patches of the two main categories of solar development—larger utility-scale 
photovoltaics (UPV) and smaller distribution-side utility-scale photovoltaics (DUPV)—to simulated 
landscapes in 2040 (Figure 1). We parameterized and calibrated this Markov-CA solar siting and 
development model using four distinct sub-models that are intended to represent ground-level 
components of solar development. These sub-model components include: (1) Demand; (2) Suitability; 
(3) Transition Rates; and (4) Spatial Attributes. Sub-model components are described in detail below.  
 
Demand Component (How Much): 
We derived the demand component from the National Renewable Energy Laboratory (NREL) Regional 
Energy Deployment System (ReEDS) 2020 Model (Brown et al. 2020). Our model leverages the NREL 
ReEDS Mid-case Scenario data on solar demand by state in 2040 (Cole et al. 2020). The ReEDS Mid-case 
Scenario extrapolates future renewable energy capacity/generation based on current economic and 
renewable energy development conditions, as well as federal and state policies. Demand is expressed at 
the state level in terms of annual generation capacity in megawatts (MW).  
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Figure 1: Markov-CA Solar-Siting Development Model Schema. Demand, suitability, transition, and 
spatial attribute sub-model components are computed to parameterize a Markov-CA land-use model 
designed to predict where and how much solar development will occur in 2040.  
 
 
Our modeling only focused on utility-scale solar energy installations. We focus on two categories from 
the ReEDS data: utility-scale photovoltaics (UPV) and distribution-side utility-scale photovoltaics (DUPV). 
The ReEDS model defines UPV as being large (~600 acres) and likely to be sited in rural areas (Brown et 
al. 2020). Their size makes it viable to build grid interconnections, so it is possible to site them farther 
from existing substation or transmission nodes than DUPV facilities, but proximity to transmission lines 
is still important. In contrast, the ReEDS model defines DUPV as being small (~6 acres) and situated 
closer to urban areas where they can be directly connected to existing grid-nodes. The model reflects 
these distinctions in array size and infrastructure requirements.  
 
We did not include concentrating solar power (CSP) since it is largely restricted to the desert southwest 
and is also much less common than UPV and DUPV. We also did not include rooftop solar development 
since it is most likely deployed in areas that are already designated as urban and highly developed (UHD) 
and low-density residential (LDR) and does not directly threaten farmland.  
 
The amount of land area that is needed to meet demand for the different types of solar development is 
a function of solar energy capacity. For the contiguous U.S., NREL projects 456,000 MW of UPV and 
DUPV solar capacity in 2040 in the Mid-case Scenario. This can be translated to land area using a 
generalized national array-density estimate for UPV/DUPV developed by NREL: 39MW/km2 or 6.3 
acres/MW (Brown et al. 2020). Using the conversion equation, we determined that this amount of 
generation will require ~11,700 km2 (~2.9 million acres) of land to meet capacity/demand for utility-
scale PV in the ReEDS Mid-case Scenario, which is somewhere between the land area of New Jersey and 
Connecticut.  
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Technical Suitability Component (Where): 
An area is considered suitable for solar development if it meets a set of criteria outlined in the Technical 
Suitability and Limits sub-models below.  
 
Technical suitability is determined using the key technological and economic factors that govern realistic 
areas for siting solar power. These factors include: (1) elevation; (2) slope; (3) proximity to existing 
transmission infrastructure; and (4) proximity to urban and populated places. We did not include land 
cost as a suitability characteristic, as this has been shown to be a minor factor in the economics of solar 
energy development, whereas proximity to existing transmission infrastructure is critically important. 
 
Spatial data for elevation/derived data (e.g. slope), existing transmission infrastructure, 
urban/populated places, and other variables were acquired from various sources. A full description of all 
data and sources to be used in the model is available in Table 2. 
 
We account for the differences between UPV and DUPV development in three specific ways: (1) size 
ranges; (2) proximity to linking infrastructure; and (3) proximity to urban (UHD) areas. First, we limit the 
size of DUPV development by adjusting the patch builder function to allow new solar growth to range 
between 5-7 acres, or ~1MW of capacity. We link DUPV development to existing substation nodes 
within a 3-mile distance. We also allow DUPV development to occur nearer to UHD and LDR 
development since it directly feeds into distribution networks. For UPV, we apply similar 
parameterization, but alter the size parameter to allow UPV developments to grow between 550-650 
acres, or ~100MW of relative capacity. New UPV development is linked to transmission lines within a 5-
mile distance and is excluded within 10 miles of the FUT UHD and LDR development types.  
 
 
Table 2: Model Input Data 
  

Component Sub-
Model 

Dataset Source Characteristics Scale Collected 

Demand D ReEDS Mid-case 
Scenario Solar 

Generation 

NREL Non-Spatial State Yes 

 D Per-Capita Array 
Density 

NREL Non-Spatial State Yes 

Suitability TS Elevation USGS Spatial Continuous 
Raster (30m2 

pixel) 

Yes 

 TS Slope Derived Spatial Continuous 
Raster (30m2 

pixel) 

Yes 

 TS Transmission 
Lines 

EIA Spatial Line/Vector Yes 

 TS Electricity 
Substations 

EIA Spatial Point/Vector Yes 

Limits Limits Protected Areas 
Database (PAD-

US) 

USGS Spatial Polygon/Vector Yes 
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 Limits FUT 2016 – UHD 
& LDR Lands 

AFT Spatial Raster (30m2 
pixel) 

Yes 

 Limits Predicted Land 
Value Raster 

Nolte et 
al. 2020 

Spatial Raster (480m2) Yes 

Transition 
Rates 

TR FUT 2001 Land-
Use Dataset 

AFT Spatial Raster (30m2 
pixel) 

Yes 

 TR FUT 2016 Land-
Use Dataset 

AFT Spatial Raster (30m2 
pixel) 

Yes 

 TR Global Dataset of 
Wind and Solar 

Farms - Solar 
Footprints 

Dunnett 
et al. 
2019) 

Spatial Polygon/Vector Yes 

 
 
Limits to solar development are modeled in the same way as limits to UHD and LDR development in the 
FUT2040 future development modeling (see Xie et al. 2022). Solar development is not placed on 
protected lands, federal lands, or existing UHD or LDR. While there are some land use types in LDR areas 
that may be subject to solar development in the real world, identifying them reliably is too challenging, 
which represents a limitation of this analysis. Likewise, it is expected that some solar development will 
occur on federal lands such as those managed by the Bureau of Land Management and the U.S. Forest 
Service, but determining which federal lands are suitable for solar development was beyond the scope 
of this analysis. Local opposition to solar development can also impose limits on development, especially 
in residential areas with politically powerful residents. To incorporate an aspect of “NIMBYism” into the 
model, we leverage a spatialized land value index dataset developed by Nolte et al. (2020) to restrict 
solar development on land in the upper 5% of national value.  
 
Overall Suitability is determined by combining the technical suitability and limits maps. Areas that have 
limits to development (binary: 1 = not limited, 0 = limited) are removed from the technical suitability 
map using a spatial masking process. The simplified deployment equation to determine suitability is: 
 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 (𝑺𝑺) = 𝑻𝑻𝑺𝑺 ∗  𝑳𝑳 
 
Where TS is the technical suitability map and L represents the Limits map. The overall suitability map is 
then used as an input to determine where solar development is likely to occur in the weights-of-
evidence conditional transition probability process (see below).  
 
Transition Probabilities Component (How Likely):  
Transition probabilities are expressed as the likelihood/probability that a given land use type will be 
converted to solar development based on previously observed solar development land conversions. 
Transition probabilities are measured at the pixel level and are calculated by generating a matrix of 
observed pixel-to-pixel conversions between two input land-use maps at different time steps (Dunnett 
et al. 2020). Initial transition probabilities are calculated using a recently published dataset of solar plant 
footprints that have been incorporated into to the FUT 2001 and FUT 2016 land use datasets using 
spatial overlay processes (Table 2). Solar plants that have been developed since 2001 were identified 
and combined with the FUT 2001 and 2016 maps to calculate the transition rates for each FUT land-
cover type based on observed increases in solar development. These transition rates are used to 
extrapolate potential future transition probabilities in 2040 based on the following equation: 
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Dinamica ego applies a Bayesian probability weights-of-evidence (WOE) method that combines land-use 
transition rates with suitability variables to produce conditional transition probability maps that 
highlight the most favorable areas for change. In the WOE approach, continuous variables like elevation 
and distances are categorized according to ranges and split into buffers that are used to train the model. 
Model weights for each variable are estimated for all breakpoints (buffer ranges). If multicollinearity 
among any of the variables is present within a given buffer range, one of the correlated variables is 
removed within that range to reduce bias.  
 
 

 
 
Figure 2: Spatial attributes of solar footprints are computed using Fragstats software. Patch area, patch 
contiguity, and patch density are all defined and computed for solar footprints within each analysis 
region and used as inputs into the cellular automata spatial allocation model to “grow” realistic patches 
of new/future solar development. 
 

𝑷𝑷𝑺𝑺𝒊𝒊= �
𝑷𝑷𝟏𝟏.𝟏𝟏 ⋯ 𝑷𝑷𝟏𝟏.𝒏𝒏
⋮ ⋱ ⋮

𝑷𝑷𝒏𝒏.𝟏𝟏 ⋯ 𝑷𝑷𝒏𝒏.𝒏𝒏

� 

𝑺𝑺(𝑺𝑺 + 𝟏𝟏) = 𝑷𝑷𝑺𝑺𝒊𝒊 ∗ 𝐒𝐒(𝐭𝐭) 

S(t), S(T+1) = System Status at Time (t or t+1) 
𝑃𝑃𝑖𝑖𝑖𝑖 = Transition Probability Matrix 
𝑃𝑃1.1…𝑛𝑛.𝑛𝑛 = Transition of individual land uses to solar (% converted) 
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Spatial Attributes Component (Size and Shape): 
To capture variation in the size and shape of future solar development, we computed patch 
characteristics of existing solar development for each analysis region. Specifically, we measured the 
mean patch area, contiguity, and patch density of solar patches using Fragstats patch dynamics 
statistical software. Mean patch area, contiguity, and density are comprehensive measurements of the 
size and shape of land use patches and can help determine how connected and/or diffuse solar 
development is within an analysis region. Figure 2 outlines an example of how patches of solar 
development might be characterized based on variations in their size and shape. The model allows for 
variation in array size around the means of ~6 and ~600 acres for DUPV and UPV, respectively, as well as 
array shape. 
 
The spatial attributes/patch characteristics of solar farm footprints are used as inputs into the cellular 
automata portion of the spatial allocation model. The variations in the size, shape, and density of solar 
footprints among analysis regions produced more realistic patterns of “new” solar development based 
on the patch characteristic of individual regions. For example, solar development in west Texas is more 
likely to be large, dense, and contiguous, while solar development in Vermont is more likely to be 
smaller and more dispersed due to the background features of these two landscapes (e.g. slope, land 
use/cover). As the model ‘seeds’ the landscape to search for new development, the patch characteristics 
component determines how new solar development patches will ‘grow’ based on a set of neighborhood 
transition rules that incorporate the derived patch attributes (e.g. shape and density) and conditional 
transition probabilities for each land use type.  
 
Final Spatial Allocation Model: 
The final spatial allocation model combined the Demand, WOE Transition Probabilities, and Spatial 
Attributes components to disperse and grow new patches of solar development on the landscape within 
analysis regions in 2040. The model projected the amount of solar development we can expect to see 
over time according to the NREL Mid-case demand scenario and grew realistic patterns of new solar 
development based on observed conditions and suitable locations within analysis regions. Figure 3 
outlines the model components that were included in the Markov-CA algorithm to predict and finalize 
maps for solar development in 2040.  
 
We developed the model in the Dinamica EGO modeling software environment, a flexible and 
commonly used platform for land-change modeling (Argemiro et al. 2020). CA spatial allocation in 
Dinamica Ego uses the patcher functor, which relies on the observed spatial patterns within an analysis 
region to predict the location, size, and shape of new patches. The prune factor, which is how the model 
leverages stochasticity, specifies the size of the vector where cells are ranked for inclusion in a new 
patch once a seed cell has been identified. The patcher function then continues to seed the landscape 
and grow new patches of solar until demand has been met. We set a minimum developable land 
threshold to simplify the analysis and avoid allocating unrealistically small amounts of solar capacity 
(e.g., 0.07 MW).  
 
Once the FUT2040 projected urban development modeling maps for 2040 were finalized (Xie et al. 
2022), we ran the solar model and quantified the amount and quality of farmland that might be 
impacted in states and counties throughout the country.  
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Figure 3: Spatial Allocation Markov-CA Solar Growth Algorithm. Using Dinamica EGO urban growth 
modeling tools, we inputted the model components that determine demand, suitability, transition 
probabilities, and spatial attributes for solar development to predict future solar development in 2040. 
The Patcher tool accepts the spatial attributes component, demand cell transition numbers, and 
conditional transition probability surface to determine where and how to “grow” new patches of 
development at each time step. The Patcher tool outputs updated surfaces that are inclusive of new solar 
development at each timestep. 
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Findings 
Our model projected 2.5 million acres of new utility-scale solar installations (DUPV and UPV) from 2020-
2040. This is slightly lower than the NREL ReEDS Mid-case Scenario total of ~2.9 million acres due to 
modeling challenges, potentially including the integration with the FUT2040 projections of new UHD and 
LDR land use. Additionally, some of the transition rules that were implemented might have over-
restricted solar development in some cases. For instance, the transition probabilities for both UPV and 
DUPV showed that a small proportion of UHD and LDR land was converted to solar between 2001 and 
2016; however, these land use types were restricted from development in our model. This is primarily 
an issue of underlying data. Our model was built on maps of land use, which are inherently aggregations 
of multiple types of land cover. Realistically, UHD and LDR land uses that include open space, forest, or 
grass land-cover types can be—and have been—used for DUPV solar development. However, our 
underlying dataset does not allow us to determine which UHD and LDR lands are eligible for utility-scale 
solar development, so we excluded them entirely. This may have resulted in an under-projection of solar 
installations.  
 
The projected deployment of solar energy installations, and their impact on agricultural land, is 
concentrated in specific areas of the country (Figure 4, Tables 3 & 4). Based on historical patterns of 
solar land conversion as documented in the Markov-CA model, 2.1 million acres (83%) of the total solar 
development from 2020-2040 is likely to occur on agricultural lands (Table 5).  
 
 

 
 
Figure 4. Projected acres of agricultural land converted to utility-scale solar photovoltaics energy 
generation facilities by state from 2020-2040.  
 
 
 



 

10 
 

Table 3: Projected acres of agricultural land converted to utility-scale solar photovoltaics energy 
generation facilities by state from 2020-2040. 
 

State Acres State Acres State Acres 
Texas 345,200  Kansas 36,600  Massachusetts 10,400  
California 311,200  Ohio 32,600  New Mexico 9,000  
Florida 188,000  Minnesota 29,700  Alabama 6,700  
South Carolina 138,500  Maryland 28,200  Connecticut 6,600  
Michigan 93,900  Colorado 27,400  Oregon 6,300  
Arizona 89,100  Indiana 23,300  Arkansas 6,000  
Illinois 82,400  Tennessee 23,300  Washington 5,800  
Oklahoma 60,200  Iowa 22,600  Delaware 5,400  
Wisconsin 54,300  Mississippi 20,600  North Dakota 4,900  
North Carolina 51,100  Utah 20,000  New Hampshire 2,400  
Louisiana 48,000  Idaho 19,700  Maine 1,500  
Virginia 45,900  Nebraska 16,000  Montana 1,500  
New York 45,100  West Virginia 15,000  Vermont 1,200  
Kentucky 42,700  Pennsylvania 11,800  Wyoming 1,000  
Georgia 41,900  New Jersey 11,500  Rhode Island 1,000  
Nevada 41,500  Missouri 10,800  South Dakota 800  

Contiguous United States: 2,098,600 acres 
 
 
Table 4. Counties with the most acres of agricultural land projected to be converted to utility-scale 
photovoltaics energy generation facilities from 2020-2040. 
 

County State Acres County State Acres 
Kern California 57,400  San Luis Obispo California 12,000 
Pecos Texas 43,200  Tulare California 11,800  
Fresno California 32,500  Riverside California 10,600  
Maricopa Arizona 26,300  Orangeburg South Carolina 10,200  
San Bernardino California 24,200  Culberson Texas 9,900  
Clark Nevada 20,300  Siskiyou California 9,600  
Pinal Arizona 19,100  Collingsworth Texas 9,000  
Polk Florida 17,900  Yavapai Arizona 8,700  
Brewster Texas 17,500  Colusa California 8,600  
Reeves Texas 14,600  Tehama California 8,500  
Imperial California 13,600  Hendry Florida 8,400  
Darlington South Carolina 13,600  Presidio Texas 8,300  
Beaver Oklahoma 13,100  Berrien Michigan 8,200  
Los Angeles California 12,000  Kings California 8,100  
Pima Arizona 12,000  Jackson Florida 8,100  
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Table 5. Projected total acres of land converted to utility-scale solar photovoltaics energy generation 
facilities across the contiguous U.S. from 2020-2040, by land-use type.  
 

Land Use Acres 
Cropland 1,017,500  
Pastureland 358,500  
Rangeland 652,000  
Woodland  70,500  
Forestland 340,900  
Other 95,300  
Total 2,534,800  

 
Nearly half of the solar conversion on agricultural land is projected to occur on Nationally Significant 
land, the nation’s best land for long-term production. Our model projected 1,018,100 acres of 
conversion on Nationally Significant land, which is 49% of the total agricultural land conversion 
(2,098,600). Solar developers favor the attributes of high-quality farmland since it is more likely to be 
flat, dry, cleared, and close to existing infrastructure (Grout and Ifft 2018).  
 
We also project that nearly 341 thousand acres of forestland will be converted to utility-scale solar 
development. Forests often serve as important buffers to agricultural lands and other open spaces (FAO 
2016). Their conversion can have cascading effects that remove agricultural runoff and flooding controls, 
reduce biodiversity and pollinator habitat, and increase pest abundances—all of which can detrimentally 
impact farmland.  
 
Discussion 
The NREL ReEDS Mid-case Scenario used to drive our model does not eliminate all fossil fuels from the 
electricity sector, the stated goal of the Biden administration. To achieve this goal, it is estimated that a 
significantly larger amount of utility-scale solar will be needed, ranging from 5.3 to 7.4 million acres in 
2040 (Larson et al. 2021; U.S. DOE 2021). Even more solar would be needed to fully electrify 
transportation, heating, and other energy needs. As a result, modeling based on the NREL ReEDS Mid-
case Scenario may greatly underestimate future solar energy demand and impacts. Without good 
planning and effective permitting processes, the impact of solar development on U.S. agricultural lands 
could be significant. 
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