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Background

Agricultural lands (cropland, pasture, and rangeland) account for almost half of the land area of

the conterminous United States (CONUS) and are frequently implicated in species declines

through habitat loss and fragmentation, pesticide use, and the impacts of mowing and harvest

(Newbold et al. 2015, Stanton et al. 2018). However, the effects of agriculture on wildlife

populations vary considerably depending on agricultural management practices and the ecology

and life history of the species concerned. For some species, agriculture lands may provide

important foraging or breeding habitat (Fajardo et al. 2009, Fehlmann et al. 2021) or serve as

movement corridors through more heavily modified landscape (Doherty and Driscoll 2018,

Grass et al. 2019), while for other, more sensitive species, agriculture may impose hard barriers

to movement (Sieving et al. 1996, Wimberly et al. 2018), potentially driving population declines

through habitat fragmentation. This range of agricultural impacts is exemplified by avian species,

which vary substantially in their capacity to use agricultural landscapes as primary or movement

habitat. Agricultural intensification across North America has been a major driver of declines in

farmland-associated bird species since the middle of the last century (Stanton et al. 2018).

However several authors have noted the potential for supporting avian biodiversity on

agricultural lands through wildlife-friendly farming practices and the promotion of functional

connectivity across agricultural and mixed-use landscapes (Fahrig et al. 2011, Redlich et al.

2018, Hendershot et al. 2020). Identifying opportunities to support bird species habitat use and

connectivity on agricultural lands is therefore an important conservation objective.

Here, we examine the effects of agriculture on habitat suitability and functional connectivity for

three avian focal species that exemplify the complex effects of agriculture on species habitat use,

movements, and populations: the greater sage grouse (Centrocercus urophasianus; hereafter,

sage grouse), the American black duck (Anas rubripes; hereafter, black duck), and the bobolink

(Dolichonyx oryzivorus). The sage grouse is experiencing ongoing range contractions, due in part

to conversion of their required sagebrush-steppe habitat to agricultural uses, including intensive

grazing (Shirk et al. 2017). Despite these grazing impacts, rangelands across the sage grouse’s

extant range are thought to provide important movement habitat and are typically less strongly

avoided than cultivated croplands (Tack et al. 2019). The black duck, once the most common

waterfowl species in eastern North America, has experienced substantial declines since at least
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the 1950’s (English et al. 2017). Conversion of wetland habitat to agricultural and urban uses has

been a major driver of declines for this wetland-dependent species (Conroy et al. 2002).

However, in recent years, evidence is emerging that agricultural lands may actually provide

important wintering and/or nesting habitat for black duck populations, with anthropogenic food

subsidies in agricultural fields potentially partially compensating for the loss of preferred

wetland foraging habitat (Maisonneuve et al. 2006, Lieske et al. 2012, English et al. 2017). The

bobolink is a neotropical migrant songbird that historically nested in native grasslands in the

northern US and southern Canada (Herkert 1997). Bobolinks have also experienced substantial

population declines (>70% decline since 1968; Stanton et al. 2018) linked to agricultural

intensification. With the loss of native grasslands in North America, the majority of bobolink

breeding now occurs in pastures and grain fields (Herkert 1997), and major ongoing threats to

bobolink populations are linked to the intensity of agricultural management in these systems, i.e.,

the frequency and intensity of cutting, harvesting, and grazing in agricultural fields (Perlut et al.

2008).

These three focal species differ substantially in their movement capacity and thus their use of

agricultural and other modified landscapes. The sage grouse is the least vagile of the three

species, consisting of a mixture of resident and relatively short distance (up to ~120 km) migrant

populations (Tack et al. 2012, 2019). The relatively limited movement of sage grouse, combined

with range contraction, has resulted in restricted gene flow between populations (Oyler-Mccance

et al. 2005) and genetic isolation of remnant populations in Washington (Shirk et al. 2017),

highlighting the importance of maintaining and restoring connectivity across the sage grouse

range. The black duck exhibits intermediate movement capacity, with most populations

undertaking seasonal migrations between the southeastern U.S. and the northeastern U.S. and

Canada, with multiple stopovers (up to 5) during the course of the migration (Coluccy et al.

2020, Peck et al. 2022). The most vagile focal species is the bobolink, a neotropical migrant that

transits between breeding grounds in the northern U.S. and southern Canada and wintering

grounds in central South America, a migration that includes trans-oceanic non-stop flights of up

to 3,500 km (Perlut 2018).
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Given these substantial differences in movement capacity and resulting differences in each

species’ response to landscape structure and human disturbance, we examined different aspects

of landscape connectivity for each of the three focal species. For the sage grouse, we examined

connectivity across the sage grouse range during all seasons to capture movements associated

with migration as well as natal and breeding dispersal. For the black duck, we examined

connectivity between potential stopover sites during spring and fall migration, focusing our

analyses on movements occurring between migration start and end dates. Because bobolinks are

capable of undertaking non-stop flights of distances greater than the north-south extent of the

conterminous United States (Perlut 2018), localized human disturbance and land cover are likely

to be less relevant to migratory movements for this species than for the other focal species.

However, movement within a breeding season - either natal dispersal outside a parents’ territory

or dispersal by breeding adults after a failed nesting attempt - has the potential to impact

metapopulation persistence and species range contraction/expansion (Fajardo et al. 2009, Cava et

al. 2016). Bobolinks show high breeding site fidelity when returning from wintering grounds, but

adults and especially fledglings may make exploratory movements within a breeding season to

assess potential new breedings sites for the subsequent year. We focused here on these

within-breeding season exploratory movements, which are likely to be affected by local/regional

landscape characteristics and are therefore a valuable target for connectivity modeling.

For all focal species, we conducted U.S. range-wide analyses of both habitat suitability and

connectivity, using random forest models to associate species detection/non-detection data to a

suite of habitat covariates (including agricultural land management intensity) and modeling

connectivity using circuit theory models. We then discuss the implications of our focal species

habitat management in agricultural landscapes.

Methods

Focal species data

For each of the three focal species (sage grouse, black duck, and bobolink), we modeled habitat

suitability using detection data from eBird, the Cornell Lab of Ornithology’s community science

platform (Sullivan et al. 2014, Johnston et al. 2021). eBird data are organized into “checklists”,

semi-structured surveys in which the observer records the species observed as well as variables
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associated with observation effort. Datasets made available for use in research are subject to a

rigorous pre-screening procedure (e.g., to remove false positives) and can be filtered to only

include “complete” checklists, i.e., those in which the observer recorded all species detected. By

using only complete checklists, eBird data provide information on both detections and

non-detections of focal species, where non-detections are simply checklists in which the focal

species was not observed (Johnston et al. 2021). Community science data are known to be

subject to several challenges, including spatial bias (e.g., observers tend to collect data near cities

and roads) and substantial variation in sampling effort (e.g., number of observers, duration of

surveys, distance traveled). To circumvent these issues, we followed the best practices for using

eBird data in scientific research described by Johnston et al. (2021) and Strimas-Mackey et al.

(2020), conducting spatial subsampling to remove spatial bias, filtering data by observation

effort to reduce variation in effort between checklists, and including effort covariates in our

habitat suitability models to account for differences in detection probability between checklists

(see below).

We used data from the November 2021 release of the eBird Basic Dataset (EBD), available at

www.ebird.org/science/download-ebird-data-products. Following Strimas-Mackey et al. (2020),

we filtered the EBD to only include complete checklists and reduced variation in sampling effort

by only retaining checklists with ≤ ten observers, duration ≤ 5 hrs, and total travel distance ≤ 5

km. We then created focal species datasets from the filtered EBD by retaining all checklists (both

detections and non-detections) within each species’ geographic range. We used range maps from

the International Union for the Conservation of Nature (IUCN) for each of the three focal species

(BirdLife International and Handbook of the Birds of the World 2016a, 2016b, 2021), clipped to

the borders of the conterminous United States. Finally, we truncated each species-level data set

to only include data collected between 2014 and 2018 in an effort to align detection data with the

year of our agricultural and other human land use intensity covariates (2016, see below). As

noted above, for the sage grouse, we modeled habitat suitability and connectivity across all

seasons, and therefore retained all checklists between 2014 and 2018. Our black duck models

focused on connectivity between stopover sites during annual migration. We therefore truncated

our black duck dataset to include only detections/non-detections occuring between the minimum

start data and maximum end date for both spring and fall migration (spring migration: April 18 to
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June 28; fall migration: October 5 to December 18; (Coluccy et al. 2020)). To examine

within-breeding season connectivity for bobolink, we truncated our bobolink dataset to only

those checklists occurring between the beginning and end of the breeding season (May 1 to

September 14; Perlut et al. 2008, Perlut 2018).

For each focal species, we performed spatiotemporal subsampling on detection and

non-detection data. As discussed in detail by Strimas-Mackey et al. (2020), spatiotemporal

subsampling is effective in dealing with several common modeling issues affecting community

science data, including spatial and temporal bias (e.g., tendencies for community members to

conduct sampling close to home and/or only in favorable seasons; Luck et al. 2004, Courter et al.

2013, Sullivan et al. 2014) and class imbalance, i.e., substantial differences in the number of

datapoints coded as detections vs. non-detections (Robinson et al. 2018). Detection data,

particularly for rare species, is often highly imbalanced, with far more non-detections than

detections (REF). Of the three focal species, sage grouse had the most limited geographic range,

as well as the smallest total number of checklists and the lowest proportion of detections relative

to non-detections (0.3% of 321,034 checklists). Given the relatively limited amount of available

information on where sage grouse are present, we followed guidance in Robinson et al. (2018),

retaining all checklists in which sage grouse were detected and spatially subsampling

non-detection checklists by randomly selecting a single non-detection checklist within each cell

of a 10 x 10 km grid overlaid across the sage grouse’s geographic range. This resulted in a total

of 1,277 detection and 2,782 non-detection checklists (nominal 31.5% detection rate).

Both black duck and bobolink have much larger geographic ranges and a substantially larger

number of eBird checklists. We therefore performed spatiotemporal subsampling of all checklists

for each species, randomly selecting one detection and one non-detection checklist for each year

of the study (2014 to 2018) within each cell of a 20 x 20 km grid overlaid across each species’

geographic range (note the larger grid cell size relative to sage grouse to accommodate the much

larger geographic ranges of black duck and bobolink). This resulted in 7,140 detection and

38,514 non-detection checklists for black duck (18.5% detection rate) and 11,335 detection and

46,663 non-detection checklists for bobolink (24.3% detection rate). We prepared eBird datasets

using the auk package (Strimas-Mackey et al. 2018) in R (R Core Team 2021).
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Model covariates

For each focal species, we modeled habitat suitability as a function of several environmental and

climatic covariates, described in detail below (see also Table 1). Following the best practices for

research with eBird data, we quantified all covariates within a 2.5 km radius of each checklist

location, corresponding to the spatial precision of the species detection data (maximum travel

distance for checklists included here = 5 km) and representing an ecologically relevant scale for

many bird species (Strimas-Mackey et al. 2020, Johnston et al. 2021). Covariate values for each

checklist location were calculated as either the mean value or percent cover within the specified

radius and were derived by first calculating the focal mean (for continuous covariates) or focal

sum (for binary covariates) at each pixel using circular kernels with a 2.5 km radius and then

extracting these smoothed values for the pixel associated with each checklist location. To

facilitate prediction from habitat suitability models, we also extracted smoothed values of all

relevant covariates at all pixels within a 250 m x 250 m grid spanning each species’ geographic

range, buffered by the relevant movement distance for each species (see Connectivity modeling

section below for more on relevant movement distances).

For all species, we quantified mean human land use intensity, L, using the L layers described in

detail in Appendix A (see also CSP 2019) and based on a procedure originally developed by

Theobald (2013). These L layers integrate multiple datasets to estimate the intensity of

disturbance at each location (i.e., raster pixel) across the landscape for four categories of human

disturbance: agriculture, urbanization, transportation, and energy development. L values for each

disturbance type range between 0 and 1 and are based on underlying datasets quantifying human

land use circa 2016. For all non-agricultural disturbance types we utilized existing L layers (CSP

2019). For agricultural land use intensity, we developed a novel L layer that incorporates

high-resolution data on agricultural land uses from the American Farmland Trust’s Farms Under

Threat analysis (CSP 2020) and remotely sensed estimates of management intensity at all

cropland and pasture pixels (Appendix A). For the present analysis, we extracted values from

each of the four L layers at each eBird checklist location, allowing us to consider, e.g., the effect

of agricultural land use intensity on species habitat suitability separately from that of other

disturbance types. We also included topographic covariates in all models, including mean
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elevation, slope, aspect, and ruggedness (an estimate of the variability in slope and aspect within

a given neighborhood). All topographic variables were calculated using the ALOS World 3D

Digital Surface Model (30 m resolution; Takaku et al. 2016). Ruggedness was estimated using

the vector ruggedness metric (VRM) with a window size of 1 km (Sappington et al. 2007).

For each focal species, we included one or more land cover covariates describing habitat types

known to be important to that species. Sage grouse are dependent on sagebrush habitat (Connelly

et al. 2000, Tack et al. 2012, Zeller et al. 2021) and we therefore included the percent cover of

sagebrush, using the LANDFIRE v2.0 Existing Vegetation Type (EVT) dataset (LANDFIRE

2016) filtered to only those cover types with “sagebrush” in the EVT name. Black ducks are

strongly associated with coastal and inland aquatic habitats for both nesting and foraging,

including open water (lakes, ponds, rivers), wetlands, and tidal flats (Morton et al. 1989,

Maisonneuve et al. 2006, Lieske et al. 2012, English et al. 2017). We used the 2016 National

Land Cover Database (NLCD; Dewitz 2019) to quantify the percent cover of open water (NLCD

code 11), all wetlands (90, 95), and herbaceous wetlands (95), isolating the latter category

because of the potential importance of herbaceous wetlands in providing emergent vegetation on

which black ducks can forage (English et al. 2017). We also quantified the percent cover of tidal

flats circa 2015-2016 using the dataset developed by Murray et al. (2019). Bobolinks breed in

grasslands and agricultural fields (pastures), and tend to avoid other cover types such as forested

areas (Herkert 1997, Bollinger and Gavin 2004, Perlut et al. 2008). We used the NLCD to

calculate percent cover of forests (NLCD codes 41-43) and shrublands (52). To develop a

comprehensive estimate of grassland percent cover, we combined the footprints of the NLCD

grassland and pasture/hay classes (71, 81) with that of pastures identified by the Farms Under

Threat 2016 land cover layer (CSP 2020).

Finally, we included one or more climate covariates for each focal species, with all climate

covariates derived from NASA’s Daymet v4 dataset (Thornton et al. 2020). For sage grouse, we

included mean daily snow water equivalent during winter months (01 November to 01 April), as

snow cover can limit sage grouse access to forage (Homer et al. 1993, Tack et al. 2012). For sage

grouse and bobolink, we included the mean daily minimum and maximum temperatures, and for

all three species, we included mean daily precipitation. Because the majority of black duck

Conservation Science Partners 8 | Page

https://www.zotero.org/google-docs/?knjILv
https://www.zotero.org/google-docs/?30WGG7
https://www.zotero.org/google-docs/?gjluwD
https://www.zotero.org/google-docs/?gjluwD
https://www.zotero.org/google-docs/?ehAHTE
https://www.zotero.org/google-docs/?ehAHTE
https://www.zotero.org/google-docs/?xvUxnK
https://www.zotero.org/google-docs/?xvUxnK
https://www.zotero.org/google-docs/?pKCACX
https://www.zotero.org/google-docs/?Ma5zI1
https://www.zotero.org/google-docs/?fX7ju6
https://www.zotero.org/google-docs/?oulAhk
https://www.zotero.org/google-docs/?5wILdV
https://www.zotero.org/google-docs/?rxDa3q
https://www.zotero.org/google-docs/?3D2K0g


detections occurred within the northern portion of their range, temperature covariates were

largely confounded with latitude in model predictions, leading to predicted suitable habitat that

was largely confined to northern areas and thus limiting our ability to analyze connectivity across

the black duck’s entire U.S. range. We therefore excluded temperature covariates from the black

duck model and relied instead on precipitation and land cover/use. We calculated averages for

minimum and maximum temperatures and precipitation across the entire year for sage grouse.

For black duck and bobolink, we calculated means during the focal periods (i.e., spring/fall

migration and breeding season, respectively). We extracted climate variables for the relevant

periods between 2014 and 2018, corresponding to the timespans of the eBird detection datasets

described above. Table 1 provides a summary of all covariates and the models in which they

were used. All covariates were compiled, processed, and exported at 250-m resolution using

Google Earth Engine (GEE; Gorelick et al. 2017) and the GEE Python API.
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Table 1. Descriptions of the spatial covariates used in random forest habitat suitability models for each focal species

Covariate name Source Date Native
Resolution

Predictor
type

Sage
grouse

Black
duck

Bobo-
link

Agricultural land use intensity this study 2016 250 m focal mean x x x

Urban land use intensity this study 2016 250 m focal mean x x x

Transportation land use intensity this study 2016 250 m focal mean x x x

Energy land use intensity this study 2016 250 m focal mean x x x

Elevation ALOS Global DSM (AW3D)1 2021 30 m focal mean x x x

Slope ALOS Global DSM (AW3D) 2021 30 m focal mean x x x

Aspect ALOS Global DSM (AW3D) 2021 30 m focal mean x x x

Ruggedness ALOS Global DSM (AW3D) 2021 30 m focal mean x x x

Sage brush LANDFIRE v2.0: Existing Vegetation Type2 2016 30 m percent cover x

Water NLCD 20163 2016 30 m percent cover x x

Herbaceous wetlands NLCD 2016 2016 30 m percent cover x

All wetlands NLCD 2016 2016 30 m percent cover x

Forest NLCD 2016 2016 30 m percent cover x

Shrub NLCD 2016 2016 30 m percent cover x

Grassland NLCD 2016 & Farms Under Threat4 2016 30 m, 10 m percent cover x

Tidal flats Murray et al. 2019 2014-2016 30 m percent cover x

Snow-water equivalent NASA Daymet V45 2014-2018 1 km focal mean x

Maximum temperature NASA Daymet V4 2014-2018 1 km focal mean x x

Minimum temperature NASA Daymet V4 2014-2018 1 km focal mean x x

Precipitation NASA Daymet V4 2014-2018 1 km focal mean x x x
1Takaku et al. (2016); 2LANDFIRE (2016); 3Dewitz et al. (2019); 4CSP (2020); 5Thornton et al. (2020)
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Random forest models of habitat suitability

We fit random forest (RF) models to detection/non-detection data for each species to predict the

probability of encountering the species at a given location as a function of environmental and

climatic covariates. RF models present several benefits for ecological classification and

prediction problems, including high classification accuracy and the ability to deal with complex

interactions and collinearity between covariates (Cutler et al. 2007, Fox et al. 2017).

Our process for fitting RF models to eBird data closely followed that described by

Strimas-Mackey et al. (2020). For each species, we classified detection/non-detection data based

on the spatial covariates described in Table 1 as well as a suite of covariates accounting for

variation in detection probability between checklists (Johnston et al. 2021). These detection

probability covariates included checklist year, Julian date, start time, duration, total distance

traveled, and number of observers. Given that RF models have been shown to be robust to the

inclusion of low-importance covariates (Fox et al. 2017), we fit a single model for each focal

species, including all detection probability covariates and the environmental and climatic

covariates shown in Table 1. Prior to model fitting, we randomly split each species’ dataset into

training (80% of checklists) and test sets (20% of checklists), using the training sets to fit RF

models and the test sets to assess model accuracy. Using the ranger package in R (Wright and

Ziegler 2017), we fit RF models to training data for each species using 500 trees and partitioning

based on the Gini index (Cutler et al. 2007). To further reduce issues related to class imbalance,

we used a balanced random forest approach in which, for each tree, an equal number of

bootstrapped samples were selected from detections and non-detections (Strimas-Mackey et al.

2020). We set the RF algorithm to predict probabilities rather than binary classification (Malley

et al. 2012), which in this case provides an estimate of the encounter rate for the focal species at

each checklist location. To validate our models, we quantified their ability to predict withheld

test data using five validation metrics: mean squared error, sensitivity, specificity, area under the

receiver-operator characteristic curve (AUC), and the kappa statistic (Hastie et al. 2009). We

used partial dependence plots (Cutler et al. 2007), which show the marginal effect of a given

covariate averaged across all other covariates, to visualize the relationship between individual

covariates and species encounter rates.
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We used the validated RF models for each species and continuous rasters of spatial covariates to

predict encounter rate across each species’ geographic range (buffered by relevant movement

distance, see below). We treated these predictions as spatially explicit estimates of habitat

suitability, assuming that the probability of encountering a species will be higher in more suitable

habitat. Following Strimas-Mackey et al. (2020), we accounted for detection probability in our

habitat suitability surfaces by making predictions for a “standard” eBird checklist (travel distance

= 1 km, duration = 1 hr, number of observers = 1) in the year 2016 and setting the Julian date and

checklist start times to those with the highest detection probability for each species (sage grouse:

18 March at 05:02; black duck: 17 December at 05:05; bobolink: 13 May at 05:05). Habitat

suitability surfaces ranged between 0 and 1 and were derived at 250 m resolution.

Connectivity modeling

We ran omnidirectional connectivity models for each focal species using the Omniscape

algorithm (McRae et al. 2016, Landau et al. 2021), a circuit theory-based approach that models

the movement of organisms across the landscape as the flow of electrical current through a

circuit (McRae et al. 2008, Dickson et al. 2019). In circuit theory-based models, current flow

provides an estimate of the probability or intensity of the movement of organisms through every

pixel on the landscape. Omniscape models “coreless” connectivity in which every pixel may

potentially serve as a source and/or target of movement, thus allowing current to potentially flow

in all directions. Inputs for Omniscape models include a source strength surface, describing the

predicted probability or intensity of movement from a given location, and a landscape resistance

surface, which estimates the difficulty an animal experiences in moving through each pixel on

the landscape (Zeller et al. 2012). For each focal species, we used the habitat suitability surface

to define source strength, thresholding the layer to only those pixels with habitat suitability

greater than 0.2 to avoid treating the least suitable pixels as potential sources of animal

movement (McRae et al. 2016). Following Keeley et al. (2016), we used a negative exponential

function to transform habitat suitability into landscape resistance, R, via

R = 100 - 99 * ((1 - exp(-c * h)) / (1 - exp(-c))),
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where h is the habitat suitability value at a given pixel and c is a constant that determines the

degree of nonlinearity between h and R. Lower values of c produce linear or nearly linear

relationships between h and R, while higher values of c produce increasingly non-linear

relationships such that resistance declines more quickly with increasing values of habitat

suitability. Following guidance in Keeley et al. (2016), we chose a c value resulting in a

moderately non-linear relationship between h and R (c = 8).

The Omniscape algorithm uses a moving window approach, iteratively treating every pixel in the

source strength layer with a value greater than zero as a target for electrical current and

connecting that pixel to all other non-zero pixels within the moving window radius, which serve

as current sources. The moving window size thus sets the maximum distance between movement

start and end points. For each focal species, we determined the moving window size based on the

animal’s movement capacity and the seasonal/life history period over which analyses were run,

referred to elsewhere in the text as the ‘relevant movement distance’. Because our sage grouse

model addressed all seasons and movements, we treated the maximum observed movement

distance in the literature (120 km; Tack et al. 2012, 2019) as the relevant movement distance.

This distance also captures recorded maxima for natal and breeding season dispersal (Dunn and

Braun 1986, Cross et al. 2017). For the black duck model, which focused on connectivity

between migratory stopover sites, we considered the relevant movement distance to be 250 km,

comparable to the average distance between stopover sites for all populations monitored by

Coluccy et al. (2020). For the bobolink model analyzing within-breeding season dispersal

movements, we used the maximum observed distance between breeding sites (or natal site and

first breeding site) for a single individual (approx. 10 km; Fajardo et al. 2009) as our relevant

movement distance. Fajardo et al. (2009) measured natal/breeding dispersal distances as the

distance between sites used in consecutive breeding seasons (i.e., separated by migration to

winter range and back). However, we assume here that these distances are a reasonable

approximation of the distances bobolinks will travel within a breeding season when undertaking

exploratory movements to assess potential new breeding sites (Cava et al. 2016). Connectivity

models were run in the Omniscape.jl software package in Julia (Landau et al. 2021).
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For each species, we compared current flow on agricultural lands with current flow on other land

cover/land use types by first sampling a large number of current flow values at random locations

distributed across each species’ geographic range. The total number of points sampled was

proportional to the total area of each species’s range, equaling approximately 5 random samples

per 100 km2 (sage grouse: n = 105,608; black duck: n = 213,089; bobolink: n = 236,833). We

classified each random point as falling into one or more of the following categories: cropland,

pasture, rangeland, woodland, or all agriculture (i.e., any one of the previous four categories),

based on the FUT 2016 land cover layer (CSP 2020); low density development, based on the

2016 NLCD (Dewitz 2019) (NLCD classes: ‘developed, open space’ and ‘developed, low

intensity’ categories); high density development (NLCD classes: ‘developed, medium intensity’

and ‘developed, high intensity’ categories); natural land cover (all NLCD non-agricultural

vegetation categories, i.e., cover classes 41-74 and 90-95); and protected areas (all public lands

in the USGS Protected Areas of the US Database v2.1(USGS 2020) categorized as GAP status 1

or 2, i.e., permanently protected and managed for natural land cover). Agricultural, developed,

and natural land categories were mutually exclusive, and we gave preference to FUT agricultural

land cover classes where these overlapped with low density development or natural lands. Other

categories were non-exclusive; for instance, some natural land pixels were also in protected areas

and vice versa. Random point sampling and extraction were conducted in GEE.

Results and discussion

Our validation procedure indicated strong predictive power for each of the three focal species

random forest models (Table 2), with all AUC scores > 0.8 and all Cohen’s Kappa values >

0.4. (We note that, while there is disagreement in the literature on how to interpret

Cohen’s Kappa, values above 0.4 are often considered “good” and those above 0.75

“excellent” (Fleiss et al. 2013).) The sage grouse model showed particularly strong capacity to

predict out-of-sample data, potentially due to the limited geographic range of this species relative

to the other focal species and the strong association between sage grouse and sagebrush-steppe

habitat (Tack et al. 2012, Zeller et al. 2021).
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Table 2. Validation metrics for each of the focal species random forest models

Mean squared
error Sensitivity Specificity AUC Kappa

Sage grouse 0.076 0.75 0.967 0.944 0.744

Black duck 0.118 0.637 0.916 0.899 0.528

Bobolink 0.153 0.621 0.852 0.831 0.435

Partial dependence plots, showing the marginal effect of a given covariate averaged across all

other covariates in the random forest model (Strimas-Mackey et al. 2020), highlight the complex

relationship between agricultural land use intensity (L) and habitat suitability for each species

(Fig. 1). Encounter rates generally increased with increasing agricultural L for sage grouse (Fig.

1a), whose range overlaps substantially with private rangelands but also includes some cultivated

areas (Tack et al. 2019). Recent evidence suggests that black ducks may use agricultural lands

(croplands and pasture) for foraging during the winter and breeding seasons (Maisonneuve et al.

2006, Lieske et al. 2012, English et al. 2017). However, our model suggests that agricultural

lands provide relatively poor stopover habitat during migration, with black duck migratory

season encounter rates tending to decline with increasing agricultural L (Fig. 1b). Bobolinks

exhibited the highest breeding season encounter rates at intermediate values of agricultural L

(Fig. 1c). As noted above, with the loss of native grasslands, bobolinks now largely depend on

grain fields and pastures for nesting (Herkert 1997) but are sensitive to intensive management

regimes that involve frequent harvest or mowing (Perlut et al. 2008). The observed peak in

bobolink encounter rates at intermediate L values likely reflects a preference for pastures and

grain fields with less intensive management practices. It should be noted that the patterns in

Figure 1 incorporate complex interactions with other environmental and detection-related

covariates in the random forest model, which are not straightforward to visualize in partial

dependence plots (Strimas-Mackey et al. 2020).
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Figure 1. Partial dependence plots of the marginal effect of agricultural land use intensity on encounter rate (a proxy

for habitat suitability) for (a) greater sage grouse, (b) American black duck, and (c) bobolink, as estimated by the

random forest model for each species.

Maps of habitat suitability and connectivity across each species’ geographic range (Fig. 2)

highlight potential target areas for management action to preserve high-quality habitat and

connectivity within and among populations. Generally, year-round habitat suitability for sage

grouse, as well as areas of highest predicted probability of movement (i.e., current flow) were

concentrated in relatively flat, medium-to-high elevation (i.e., >1000 m) habitats with high

percent cover of sagebrush (Fig. 2a,d). Habitat suitability and connectivity for migrating black

ducks was strongly associated with water, being highest in coastal areas, along major river

systems, and in the vicinity of the Great Lakes (Fig. 2b,e). Bobolink breeding habitat suitability

and connectivity was relatively diffuse throughout the Midwest and Northeast regions of the U.S.

(Fig. 2c,f), reflecting this species’ use of agricultural landscapes as nesting habitat and general

avoidance of forested areas for breeding (Herkert 1997, Bollinger and Gavin 2004, Perlut et al.

2008).
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Figure 2. Habitat suitability (as predicted from random forest models) and the predicted probability of movement (i.e., current flow, as predicted from circuit

theory-based connectivity models) for greater sage grouse (a,d), American black duck (b,e) and bobolink (c,f).
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Figure 3. Median current flow values on agricultural lands (cropland, pasture, rangeland, woodland, and all

agricultural categories combined [‘all ag’]) for each focal species, as compared to median current flow in developed

areas and landscapes characterized by more natural land cover (i.e., all natural lands and lands within USGS GAP 1

and GAP 2 protected areas). Median current flow values are shown for (a) greater sage grouse, (b) American black

duck, and (c) bobolink. Note that, given differences between connectivity model inputs, current flow values are not

comparable across species and should only be interpreted here in terms of relative differences between different land

cover/land use types

Agricultural lands, and particularly rangelands, provide essential movement habitat for sage

grouse, with median current flow values being higher on rangelands than any other land

cover/land use type considered (including protected areas and those categorized as having natural
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land cover; Fig. 3a). This result confirms previous findings that private lands (particularly

ranchlands) in the western U.S. play an important role in supporting sage grouse movement

(Tack et al. 2019), providing critical pathways through areas of increased disturbance such as

energy development (Doherty et al. 2008). Our model also predicts some sage grouse movement

through croplands (Figs. 2d and 3a), and indeed cultivated landscapes have previously been

shown to support sage grouse, but only when intermixed with sagebrush steppe habitat (Shirk et

al. 2017). Conservation easements that preserve relatively intact rangelands and programs that

support the maintenance of native vegetation on cultivated landscapes (e.g., USDA’s

Conservation Reserve Program) will therefore be critical to sage grouse conservation on working

landscapes.

Current flow for migrating black ducks tended to be lowest on agricultural lands relative to more

developed or natural land cover/land use types (Fig. 3b), though woodlands (patches of remnant

forest cover associated with a functioning farm unit) were predicted to provide some support for

black duck movement, as indicated by moderate median current flow values. Generally low

predicted movement of black ducks on agricultural lands likely stems from this species’

dependence on wetlands, coastal areas, and other aquatic habitats as migratory stopover sites

(Stevens et al. 2003, Robinson et al. 2016). Preventing further conversion of aquatic habitats to

agriculture or other uses will therefore be critical to ensuring the preservation of high quality

stopover habitat for black ducks. While our results suggest limited potential for agricultural lands

to support black duck connectivity during migration, previous work indicates a role for croplands

and pastures in providing foraging opportunities for ducks during other times of the year (e.g.,

overwinter; Maisonneuve et al. 2006, Lieske et al. 2012).

For bobolink, croplands exhibited among the highest median current flow values of any land

cover/land use type (Fig. 3c), emphasizing the importance of cultivated landscapes for this

species during the breeding season (Herkert 1997, Bollinger and Gavin 2004, Perlut et al. 2008).

Agricultural lands throughout the eastern and midwestern US will likely continue to play a

critical role in supporting breeding season movements of bobolinks (Fig. 2f), particularly where

“land sharing” conservation approaches (i.e., practices that maintain or enhance the capacity of

farms to support biodiversity through wildlife-friendly farming practices) are encouraged
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(Kremen and Merenlender 2018, Grass et al. 2019). The federal government can play a role in

supporting such wildlife-friendly practices through programs such as the USDA’s Conservation

Stewardship Program or Environmental Quality Incentives Program.

Figure 4. Kernel density plots showing the distribution of urban land use intensity values for (a) American black

duck and (b) bobolink at locations where each species was detected (blue) and not detected (orange).

Interestingly, current flow was high on developed lands for both black ducks and bobolinks (Fig.

3b,c), suggesting substantial movement through suburban and urban landscapes. Despite our

attempts to correct for eBird sampling bias through spatiotemporal subsampling (see above),

high predicted movement through developed areas (and correspondingly high predicted habitat

suitability, Fig. 2b,c) may stem in part from the tendency of community scientists to collect data

in or near the cities in which they live. However, comparing detection/non-detection data for

black ducks and bobolinks suggests that encounter rates for these species are indeed higher in

more developed areas; the distribution of urban land use intensities (L) at locations where birds

were detected was shifted towards higher urban L values relative to non-detection locations (Fig.

4) despite both detection and non-detection checklists having the same potential for spatial bias

towards urban areas. For black ducks, the fact that many urban areas are situated along coastal or
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inland waterways may explain this apparent preference for urbanized landscapes as stopover

habitat. The drivers of the apparent bobolink preference for moderate levels of urban L are less

obvious, but may reflect use of open grassy habitats in suburban lawns and urban greenspaces.

All three focal species considered here have experienced substantial declines or range

contractions over the last several decades, with agricultural expansion and intensification

implicated as a major driver in each case (Shirk et al. 2017, English et al. 2017, Stanton et al.

2018). However, our results suggest that, when managed wildlife-friendly practices (i.e.,

low-intensity grazing, moderate mowing or harvest frequency), agricultural landscapes can

provide valuable movement habitat for sage grouse and bobolinks, while black ducks may

benefit from access to agricultural lands in the non-migratory seasons, particularly when these

are in proximity to native vegetation and/or wetland habitats. As noted above, federal incentive

programs have an important role to play in supporting agricultural management practices that

facilitate connectivity for these species, and we anticipate that our model results will be valuable

in identifying target landscapes for such incentives.
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Appendix A. Estimating human land use intensity

To evaluate the influence that agricultural lands and other modified landscapes exert on avian

connectivity, we estimated human land use intensity (L) for all locations (i.e., pixels in a gridded

landscape) across CONUS. Our estimates of human land use intensity were based on a procedure

originally described by Theobald (2013), which assigns literature-supported values of intensity to

multiple forms of human land use. For all non-agricultural land uses we used an existing L model

(CSP 2019) that integrates multiple land use variables into three human impact categories - urban

(including data on residential development and nighttime lights), transportation (including roads,

railways, powerlines, and pipelines), and energy (including oil and gas wells, coal mines, and

utility-scale solar and wind installations).

To quantify land use intensity on agricultural lands, we started with existing, static L estimates

for individual agricultural cover types (Theobald 2013) and incorporated a dynamic measure of

management intensity based on temporal variation in vegetation cover at a given location. We

used high spatial resolution (10 m) data on 2016 land cover from American Farmland Trust’s

Farms Under Threat (FUT) analysis, which integrates data from multiple national-scale datasets

to define several agricultural and non-agricultural cover classes (CSP 2020; data accessible from

csp-fut.appspot.com). We focused on the four agricultural cover classes, which together account

for 3.64 million km2, or approximately 47.6% of CONUS land area (Fig. 1). These agricultural

classes are cropland (1,549,077 km2 across CONUS), pasture (430,369 km2), rangeland

(1,658,472 km2), and woodland (174,323 km2). The woodland class is a subset of the Natural

Resources Inventory forest class defined as “natural or planted forested cover that is part of a

functioning farm unit” and is no more than 160 m from cropland or pasture (CSP 2020). We

assigned each of these four classes with a baseline value of land-use intensity (L) corresponding

with the general level of human disturbance associated with that agricultural type. For cropland

and pasture, baseline L values of 0.5 and 0.4, respectively, were taken from Theobald (2013).

Similar approaches to modeling ecological flow and/or landscape integrity have treated

rangelands as having lower impact than cropland or pasture because rangelands tend to retain

some natural vegetation cover and have relatively limited human influence (Buttrick et al. 2015,

McRae et al. 2016). Woodlands are similarly characterized by relatively natural vegetation cover,

albeit in close proximity to managed agricultural lands. We therefore assigned a baseline L value
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of 0.2 to both rangelands and woodlands in an effort to capture the greater potential for wildlife

movement through these cover types.

For both cropland and pasture, the agricultural cover types characterized by relatively intensive

human management, we allowed L values to vary between pixels of the same cover type based

on estimates of management intensity. Management intensity estimates were derived from

temporal variability in vegetation cover based on the assumption that more intensively managed

areas (e.g., croplands with high fertilizer inputs and/or multiple harvests per year; pasture subject

to a high mowing frequency) will have greater variability in vegetation cover during the growing

season than areas subject to less human intervention (e.g., fallow fields) (Franke et al. 2012,

Gómez Giménez et al. 2017). We used a timeseries of Normalized Difference Vegetation Index

(NDVI) values to estimate vegetation cover variability, acquiring cloud-free NDVI estimates at

16-day intervals from NASA’s MODIS system (MOD13Q1 products). For each cropland and

pasture pixel across CONUS, we used NDVI estimates over a five year period (2014-2018)

centered on 2016, the year of our land cover dataset. NDVI estimates were acquired during the

growing season for each year, with growing season start and end dates defined separately for

each U.S. state based on the planting dates database developed by Sacks et al. (2010). For each

U.S. state, we extracted the planting start date and harvest end date for a common crop type and

used this as the date range within which NDVI estimates were acquired for all cropland and

pasture pixels in that state. For consistency, we used corn as the crop type to define growing

season dates for all states where corn is grown. For states where corn is not grown, we used

another spring-planted crop represented in the database (spring barley in Nevada and potatoes in

Maine, Massachusetts, and Rhode Island). For states that are absent from the database

(Connecticut, Vermont, and New Hampshire), we used the planting start and harvest end dates

for nearby states (in this case, other states in the New England region).

For each pixel of cropland and pasture, we calculated the coefficient of variation for all NDVI

values across the time series (hereafter, cvNDVI) as our estimate of vegetation cover variability.

The coefficient of variation was chosen to account for differences between vegetation types (e.g.,

different crops) and geographic location in average plant greenness. For each cover type

(cropland or pasture), we centered cvNDVI values by first calculating the mean for all pixels of
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that cover type within the same USDA plant hardiness zone (PHZ; (USDA 2012)) and then

subtracting this mean value from the value for each pixel. PHZs describe bands of average

annual minimum winter temperature across CONUS. We centered cvNDVI values based on

means within a PHZ to account for potential differences in vegetation cover variability across

latitudes and climatic conditions (e.g., lower variability in areas with shorter growing seasons).

Averages (± SD) of mean-centered cvNDVI were -0.05 (± 0.13) and -0.03 (± 0.10) for cropland

and pasture, respectively. To derive the final L value for cropland and pasture pixels,

mean-centered cvNDVI values were added to the baseline L value for each cover type (0.5 for

cropland and 0.4 for pastureland, see above), resulting in a range of final L estimates centered on

the baseline value. Thus, pixels with lower than average vegetation cover variability for a given

cover type and PHZ (i.e., negative mean-centered cvNDVI) received L values below the baseline

value for that cover type and those with higher than average variability (positive mean-centered

cvNDVI) received L values above the baseline.  For rangeland and woodland, we did not

incorporate vegetation index data into L estimates, instead using baseline L values for all pixels

under the assumption that variability in NDVI will be more strongly associated with phenology

and plant community composition than with human management intensity in the cover types

characterized by relatively natural vegetation.
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