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Background

Preserving and enhancing the natural movement of organisms is critical to mitigating the current

biodiversity crisis (Tilman et al. 2017) and is a key strategy for promoting species adaptations to

climate change (Heller & Zavaleta 2009), with well-connected landscapes facilitating gene flow,

migration, dispersal, and range shifts (McRae & Beier 2007; Littlefield et al. 2019). In the

United States, private agricultural lands may play an important role in facilitating such ecological

flows by providing linkages between areas of high-quality habitat (Kremen & Merenlender 2018;

Garibaldi et al. 2021). Indeed, agricultural lands (including cropland, pasture, and rangeland)

compose almost half the land area in the conterminous United States (CONUS) and, in many

areas of the country, have continued to expand over the last decade (Lark et al. 2020). This trend

is anticipated to continue (Sohl et al. 2014), underscoring the importance of centering

agricultural landscapes in any comprehensive assessment of connectivity across the U.S.

Agricultural expansion, particularly high intensity crop production, has been a major driver of

biodiversity declines globally through habitat loss, pesticide use, and the impacts of mowing and

harvest (Newbold et al. 2015; Stanton et al. 2018). Intensively farmed areas may additionally

represent substantial barriers to movement for a variety of taxa (Wimberly et al. 2018; Maas et

al. 2021). However, low-intensity agriculture and wildlife-friendly management practices (e.g.,

grassland or forest strips, diversification of crops planted) can reduce these barriers to movement

and even facilitate the flow of organisms across agricultural landscapes (Kremen & Merenlender

2018; Maas et al. 2021). Each year, governments spend billions of dollars globally to incentivize

wildlife-friendly farming and other agri-environment schemes (Donald & Evans 2006), though

limited information exists on where to target such financial incentives to maximize biodiversity

benefits, potentially leading to the haphazard allocation of resources (Polasky et al. 2008;

Kremen & Merenlender 2018).

Increases in global food production (of at least 25% by 2050; Hunter et al. 2017) will be

necessary to support a growing human population. At the same time, climate change and urban

and suburban expansion pose potential threats to food security by reducing the amount of land

area that is highly suitable for cultivation (Tu et al. 2021; Kummu et al. 2021). It is therefore
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imperative to balance the dual goals of promoting biodiversity and safeguarding the working

lands that are most critical for food production (Leclère et al. 2020). Two general strategies have

been proposed for balancing biodiversity and agricultural objectives: ‘land sharing’, i.e.,

maintaining or enhancing the capacity of cultivated lands to support biodiversity through

wildlife-friendly farming practices, potentially at the expense of yield; and ‘land sparing’, which

advocates intensifying food production in some areas while preventing the expansion of

agriculture into more natural landscapes, e.g., through formal protection (Fischer et al. 2008;

Phalan et al. 2011; Grass et al. 2019). The feasibility and desirability of land sharing vs. sparing

will depend on local context (e.g., biophysical characteristics, land use history; Fischer et al.

2008) and at regional scales, elements of both strategies will be needed to maintain connectivity

among protected areas and to support the flow of organisms that provide ecosystem services to

agricultural lands (Kremen 2015; Grass et al. 2019; Garibaldi et al. 2021). Identifying which

landscapes may be best suited to each strategy therefore represents a spatial conservation

challenge. For instance, areas where both agricultural productivity and connectivity are high may

provide key opportunities for incentive programs that promote both food production and the flow

of organisms through wildlife-friendly farming practices. Alternatively, landscapes with high

potential for long-term food production but relatively limited connectivity value may be good

candidates for government programs that keep lands in production and protect against conversion

to other land uses (e.g., urbanization).

To explore the importance of agricultural lands in supporting connectivity across the United

States, we modeled potential net movement of organisms across all terrestrial landscapes in

CONUS using a circuit theory-based connectivity modeling approach (McRae et al. 2008;

Dickson et al. 2019). We then used our connectivity results and existing information on

agricultural land quality across CONUS to identify conservation opportunities on agricultural

lands that balance species connectivity and long-term food security. To facilitate use of these

results by landowners, conservation advocates, and government agencies, we developed an

interactive web map, which allows users to explore the novel spatial data generated by our

analysis and provides guidance on using these layers to identify conservation opportunities.
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Methods

To model connectivity across CONUS, we adopted an approach based on landscape structure,

with less-modified landscapes assumed to support greater ecological flow (Dickson et al. 2017;

Marrec et al. 2020). We tailored model parameters (e.g., maximum movement distances) to best

reflect non-volant terrestrial vertebrates. Previous authors have noted that agricultural landscapes

may represent ‘invisible mosaics’ (Fahrig et al. 2011), with a particular land cover category (e.g.,

cropland) actually representing a range of impacts on animal movement due to variation in

management practices such as fertilizer application or cropping intensity. Here we build upon

existing large-scale connectivity studies (e.g., McGuire et al. 2016; Dickson et al. 2017;

Littlefield et al. 2017) by explicitly incorporating estimates of agricultural management intensity

on cropland and pasture when determining landscape resistance to movement, using a novel

method based on variation in vegetation cover during the growing season.

Estimating human land use intensity

To evaluate the influence that agricultural lands and other modified landscapes exert on

ecological flow, we estimated human land use intensity (L) for all locations (i.e., pixels in a

gridded landscape) across CONUS. Our estimates of human land use intensity were based on a

procedure originally described by Theobald (2013), which assigns literature-supported values of

intensity to multiple forms of human land use and integrates these values into a single spatial

data layer ranging from 0 (unmodified, ‘natural’) to 1 (heavily modified). Similar human land

use intensity layers have formed the basis of previous ecological flow-based connectivity models

(e.g., Dickson et al. 2017; Marrec et al. 2020).

To quantify land use intensity on agricultural lands, we started with existing, static L estimates

for individual agricultural cover types (Theobald 2013) and incorporated a dynamic measure of

management intensity based on temporal variation in vegetation cover at a given location. We

used high spatial resolution (10 m) data on 2016 land cover from American Farmland Trust’s

Farms Under Threat (FUT) analysis, which integrates data from multiple national-scale datasets

to define several agricultural and non-agricultural cover classes (CSP 2020; data accessible from

csp-fut.appspot.com). We focused on the four agricultural cover classes, which together account

for 3.64 million km2, or approximately 47.6% of CONUS land area (Fig. 1). These agricultural
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classes are cropland (1,549,077 km2 across CONUS), pasture (430,369 km2), rangeland

(1,658,472 km2), and woodland (174,323 km2). The woodland class is a subset of the Natural

Resources Inventory forest class defined as “natural or planted forested cover that is part of a

functioning farm unit” and is no more than 160 m from cropland or pasture (CSP 2020). We

assigned each of these four classes with a baseline value of land-use intensity (L) corresponding

with the general level of human disturbance associated with that agricultural type. For cropland

and pasture, baseline L values of 0.5 and 0.4, respectively, were taken from Theobald (2013).

Similar approaches to modeling ecological flow and/or landscape integrity have treated

rangelands as having lower impact than cropland or pasture because rangelands tend to retain

some natural vegetation cover and have relatively limited human influence (Buttrick et al. 2015;

McRae et al. 2016). Woodlands are similarly characterized by relatively natural vegetation cover,

albeit in close proximity to managed agricultural lands. We therefore assigned a baseline L value

of 0.2 to both rangelands and woodlands in an effort to capture the greater potential for wildlife

movement through these cover types.

Figure 1. Agricultural land cover/use across the conterminous United States (CONUS). (a) Agricultural land cover

is mapped across CONUS, with bold white lines and labels denoting Agricultural Research Service (ARS) regions.

(b) Total area of each agriculture type across CONUS.

For both cropland and pasture, the agricultural cover types characterized by relatively intensive

human management, we allowed L values to vary between pixels of the same cover type based

on estimates of management intensity. Management intensity estimates were derived from
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temporal variability in vegetation cover based on the assumption that more intensively managed

areas (e.g., croplands with high fertilizer inputs and/or multiple harvests per year; pasture subject

to a high mowing frequency) will have greater variability in vegetation cover during the growing

season than areas subject to less human intervention (e.g., fallow fields) (Franke et al. 2012;

Gómez Giménez et al. 2017). We used a timeseries of Normalized Difference Vegetation Index

(NDVI) values to estimate vegetation cover variability, acquiring cloud-free NDVI estimates at

16-day intervals from NASA’s MODIS system (MOD13Q1 products). For each cropland and

pasture pixel across CONUS, we used NDVI estimates over a five year period (2014-2018)

centered on 2016, the year of our land cover dataset. NDVI estimates were acquired during the

growing season for each year, with growing season start and end dates defined separately for

each U.S. state based on the planting dates database developed by Sacks et al. (2010) (see

Appendix A for details).

For each pixel of cropland and pasture, we calculated the coefficient of variation for all NDVI

values across the time series (hereafter, cvNDVI) as our estimate of vegetation cover variability.

The coefficient of variation was chosen to account for differences between vegetation types (e.g.,

different crops) and geographic location in average plant greenness. For each cover type

(cropland or pasture), we centered cvNDVI values by first calculating the mean for all pixels of

that cover type within the same USDA plant hardiness zone (PHZ; (USDA 2012)) and then

subtracting this mean value from the value for each pixel. PHZs describe bands of average

annual minimum winter temperature across CONUS. We centered cvNDVI values based on

means within a PHZ to account for potential differences in vegetation cover variability across

latitudes and climatic conditions (e.g., lower variability in areas with shorter growing seasons).

Averages (± SD) of mean-centered cvNDVI were -0.05 (± 0.13) and -0.03 (± 0.10) for cropland

and pasture, respectively. To derive the final L value for cropland and pasture pixels,

mean-centered cvNDVI values were added to the baseline L value for each cover type (0.5 for

cropland and 0.4 for pastureland, see above), resulting in a range of final L estimates centered on

the baseline value. Thus, pixels with lower than average vegetation cover variability for a given

cover type and PHZ (i.e., negative mean-centered cvNDVI) received L values below the baseline

value for that cover type and those with higher than average variability (positive mean-centered

cvNDVI) received L values above the baseline.  For rangeland and woodland, we did not
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incorporate vegetation index data into L estimates, instead using baseline L values for all pixels

under the assumption that variability in NDVI will be more strongly associated with phenology

and plant community composition than with human management intensity in the cover types

characterized by relatively natural vegetation.

We tested the validity of cvNDVI as a proxy for agricultural management intensity by comparing

cvNDVI values between agricultural cover types; between irrigated, unirrigated, and fallow

cropland; and across a gradient of nitrogen fertilizer use. These validation analyses are described

in Appendix B. The validation steps confirmed the utility of cvNDVI as a proxy for management

intensity, showing that (i) cropland pixels had significantly higher average cvNDVI than pasture;

(ii) for both cropland and pasture, cvNDVI was positively correlated with nitrogen fertilizer

usage; and (iii) among cropland pixels, irrigated crops had the highest average cvNDVI,

followed by unirrigated crops and then fallow fields (Appendix B).

To create a comprehensive layer of human land use intensity across CONUS, we combined our

novel agriculture L layer with layers describing other forms of human land use, and incorporated

the impact of nearby land uses and disturbances on a given location by allowing the value of

each pixel to extend beyond the focal pixel itself. For all non-agricultural land uses we used an

existing L model (CSP 2019) that integrates multiple land use variables into three human impact

categories - urban (including data on residential development and nighttime lights),

transportation (including roads, railways, powerlines, and pipelines), and energy (including oil

and gas wells, coal mines, and utility-scale solar and wind installations). Details on the

development of the final L layer (Lall) are provided in Appendix A.

Estimating landscape resistance and modeling connectivity

We used our final land use intensity layer, Lall, to derive a landscape resistance surface, which

estimates the difficulty an organism experiences in moving through each pixel on the landscape

(Zeller et al. 2012). Following Dickson et al. (2017), who conducted a sensitivity analysis to

determine an appropriate formula for deriving resistance surfaces by rescaling L values, we

calculated resistance (R) as
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R = (Lall + 1)10 + s/4,

where s is the percent slope of a given pixel, thus penalizing areas of steep slope to account for

the effects of substantial elevational changes on the movement capacity of many terrestrial

species (Dickson et al. 2017). This resulted in resistance values ranging between 1 (natural

landscape) and 1032 (heavily modified landscape). We assigned all water bodies greater than

approximately 100 m across a resistance value of 1000 to reflect the difficulty of moving through

water for terrestrial species. The above rescaling formula led to a relatively high contrast

between the resistance values assigned to locations with low, medium, and high Lall values. For

comparison, we derived a second resistance surface using a low-contrast rescaling formula

suggested by Marrec et al. (2020). See Appendix C for a comparison of the two resistance

surfaces and resulting connectivity models.

We modeled source strength, i.e., the predicted probability or intensity of movement from a

given location on the landscape (McRae et al. 2008, 2016), as the degree of ecological intactness

of a given pixel, which we calculated as 1 - Lall. Our source strength layer therefore ranged

between 0 and 1, with relatively intact habitats receiving values close to 1, while partially

modified landscapes (e.g., agricultural lands) received low but non-zero values. We assigned

zero source strength to areas unlikely to represent sources of terrestrial animal movement, using

the 2016 National Land Cover Data Base (NLCD; Dewitz 2019) to set pixels categorized as

developed, open water, perennial snow/ice, or barren rock (i.e., all NLCD cover classes < 40) to

zero. Resistance and source strength rasters for CONUS were derived at 250-m resolution using

Google Earth Engine (GEE; Gorelick et al. 2017).

Following McRae et al. (2016), we ran omni-directional connectivity models across CONUS

using the Omniscape algorithm. Omniscape is based on concepts from electronic circuit theory

(McRae et al. 2008; Dickson et al. 2019), modeling the movement of organisms across the

landscape as the flow of electrical current through a circuit. Omniscape allows users to fit

“coreless” connectivity models in which every pixel may potentially serve as a source and/or

target of movement, rather than only modeling connectivity between habitat cores, and thus

allowing current to potentially flow in all directions. The algorithm uses a moving window
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approach, iteratively treating every pixel in the source strength layer with a value greater than

zero as a target for electrical current and connecting that pixel to all other non-zero pixels within

the moving window radius, which serve as current sources. Current is then injected into the

source pixels (with the amount of current proportional to source strength) and flows across the

resistance surface (McRae et al. 2016; Landau et al. 2021). The cumulative current flow across

all iterations of the moving window provides an estimate of the probability or intensity of the

movement of organisms through every pixel on the landscape. The moving window radius is a

key parameter, setting the maximum movement distance (i.e., the maximum distance between

source and target pixels). Here we used a radius of 150 km, which approximates the upper

dispersal distances of many large-bodied terrestrial vertebrates (Sutherland et al. 2000). To

increase processing speed, we only treated every forty-first pixel as a (potential) target in the

moving window. For comparison, we also ran connectivity models using smaller moving

window radii, as described in Appendix C. Connectivity models were run in the Omniscape.jl

software package in Julia (Landau et al. 2021).

We summarized cumulative current flow values from the Omniscape model within regions of the

U.S. (defined by the USDA Agricultural Research Service [ARS]), and compared current flow

on agricultural lands with that on other land cover/land use types (including developed and

natural lands), providing an overview of agricultural land contributions to connectivity across the

country. These analyses are described in detail in Appendix A. To further explore the drivers of

high or low connectivity values on agricultural lands, we also estimate the total amount of

natural land cover and development (based on NLCD categories) within a 1-km radius of each

location on agricultural lands, hypothesizing that agriculture surrounded by greater amounts of

natural land cover and lower levels of development would tend to have higher current flow. We

tested the effect of surrounding land cover/land use on agricultural land current flow using a

spatial error regression analysis (Dale & Fortin 2014) described in Appendix A.

Identifying conservation opportunities on agricultural lands.

To help identify and prioritize conservation opportunities on agricultural lands across CONUS,

we categorized all agricultural pixels based on both their potential to support ecological flow and

their value for long-term food production. This analysis drew upon results of the connectivity
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model described above as well as a CONUS-wide data layer estimating productivity, versatility,

and resilience (PVR; 10-m resolution) of agricultural lands circa 2016, which was developed as

part of the FUT analysis described above (CSP 2020; viewable at csp-fut.appspot.com). PVR

quantifies the long-term sustainability of maintaining a given area in cultivation based on soil

and land cover characteristics and the type of agriculture practiced at a given location. See

Appendix A for further details.

We masked the current flow and PVR datasets to only agricultural pixels and calculated quantiles

of each dataset to identify pixels falling into ‘low’ (< 33% quantile), ‘medium’ (33% to 66%),

and ‘high’ (> 66%) categories for connectivity and PVR. Because some regions have generally

higher connectivity or PVR values than others, calculation of quantiles was conducted separately

for each ARS region across CONUS. Thus, both connectivity and PVR values are considered

relative to other agricultural pixels in the same region. We used these quantile estimates to

generate a pixel-level bivariate map in which each pixel on agricultural land was ranked as ‘low’,

‘medium’, or ‘high’ for both connectivity and PVR. We used this map to link joint connectivity

and food production value with specific conservation opportunities and/or financial incentives

administered by the USDA.

Results

The importance of agricultural lands in facilitating the movement of organisms varied

substantially across regions of the U.S. (Fig. 2, Table 1). At the ARS regional level, intensively

cropped landscapes in the midwest (e.g., southern Minnesota, Iowa, and Illinois, Fig. 2)

exhibited relatively high resistance to movement (Appendix D, Fig. D1) and low connectivity

(Fig. 2, Table 1), while regions with extensive rangelands (e.g., central Nebraska, southwestern

Texas) exhibited lower landscape resistance and were characterized by diffuse but relatively high

current flow, comparable to natural landscapes in the western U.S. (e.g., central Nevada, northern

Idaho; Fig. 2, Table 1). The plains region had the largest proportion of total land area in

agriculture (70.0%) and, consequently, the greatest contribution of agricultural lands to overall

connectivity in the region - agricultural lands accounted for 17.6% of top connectivity lands (i.e.,

lands in the top quartile of current flow, Appendix A) in the plains region (Table 1).
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Figure 2. Map of connectivity (current flow) across the conterminous United States. Insets show details of

agricultural landscapes with high connectivity value in (i) the central Midwest (northern Missouri) and (ii) the

coastal Northeast (Delmarva peninsula, near the border of Maryland, Delaware, and Pennsylvania), where the

persistence of patches of natural vegetation (forest fragments and strips of riparian or coastal vegetation) positively

influence the current flow values of neighboring agricultural lands.
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Table 1. Summary of connectivity on agricultural lands by Agricultural Research Service (ARS) region. Percent in

agriculture: amount of total land area in the region categorized as cropland, pasture, rangeland, or woodland.

Current flow on agricultural lands: mean (standard deviation) of current flow across all agricultural pixels in the

region. Agriculture contribution to top connectivity areas: proportion of top lands for connectivity in the region (i.e.,

those with current flow values falling within the top quartile for the region) occurring on agricultural lands. ARS

regions are shown in Fig. 1a.

ARS region Percent in
agriculture

Current flow on
agricultural lands

Agriculture
contribution to top
connectivity areas

Midwest 51.2% 92.0 (53.3) 6.2%

Northeast 21.1% 116.1 (65.1) 0.5%

Pacific 29.5% 160.2 (92.1) 0.5%

Plains 70.0% 177.8 (93.0) 17.6%

Southeast 30.3% 114.6 (70.2) 1.2%

Current flow on agricultural lands tended to be intermediate between current flow values of more

developed landscapes (e.g., urban and suburban areas) and those of natural areas (including GAP

1 and 2 protected areas; Fig. 3a). The amount of natural and developed land in the vicinity of

agricultural lands substantially influenced the connectivity value of individual agricultural pixels.

Our top spatial error regression model (Table D1, ΔAIC of next best model = 114.3) sufficiently

accounted for spatial autocorrelation in model residuals (Moran’s I = -0.03, p = 0.99) and

included an interaction between agricultural cover type and the non-linear effects of surrounding

land cover/use. Current flow values on all agriculture types were positively influenced by the

amount of natural vegetation within 1 km (Fig. 3b, see also Fig. 2 insets) and negatively

influenced by the amount of developed land within 1 km (Fig. 3c).

Mapping the combined rankings of current flow and PVR (Fig. 4) revealed that 2.7% of all

agricultural lands (10.2 million hectares [Mha]) have high values for both connectivity and PVR

(i.e., within the top 33% of agricultural lands in the same region; Table 2). The proportion of

lands in this ‘high-high’ category varied between ARS regions, being lowest in the Plains (1.3%)

and highest in the Northeast (5.8%, Table 2, Fig. 4 inset). Areas of low connectivity (i.e., values

in the bottom 33%) and high PVR were more common overall, accounting for 21.3% of all
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agricultural lands across CONUS (81.3 Mha), followed by areas of high connectivity and low

PVR (15.5%, 59.3 Mha) and areas in the lowest category for both connectivity and PVR (4.2%,

16.2 Mha; Table 2).

Figure 3. Current flow across land cover/use categories. (a) The range of current flow values on agricultural lands

(cropland, pasture, rangeland, woodland, and all agricultural categories combined [‘all ag’]) is compared to that of

developed areas and landscapes characterized by more natural land cover (i.e., all natural lands and lands within

USGS GAP 1 and GAP 2 protected areas). Data are summarized as standard boxplots with whiskers representing 1.5

times the interquartile range. Outliers are excluded for clarity (see Appendix D, Figure D2 for a version with all

outliers shown). Current flow values on agricultural land cover types are influenced by surrounding land cover/use,

including the amount of (b) natural lands and (c) developed lands within 1 km. Fitted lines in b and c show the mean

relationship between surrounding land cover and current flow as estimated by a spatial error model. For clarity, a

randomly selected subset (n = 800) of data points used in the analysis are shown.
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Figure 4. Map of agricultural lands ranked based on quantiles of connectivity (i.e., current flow) and productivity,

versatility, and resilience (PVR), a measure of agricultural land quality. White lines indicate the boundaries of

Agricultural Research Services (ARS) regions, within which quantiles of connectivity and PVR were calculated

(color scales are therefore relative to other pixels in the same ARS region). Non-agricultural land cover/use types are

shown in black. The insets show details of agricultural landscapes with high connectivity value and either high or

low PVR, and correspond to those shown in Figure 2. The central Midwest landscape (i) is characterized by

relatively high connectivity value but low PVR (deep blue color). The northern end of the Delmarva Peninsula (ii)

has large amounts of land with high connectivity and high PVR (maroon color).
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Discussion

Our results highlight the potential for agricultural lands across the U.S. to provide important

movement routes for terrestrial species, supporting connectivity through otherwise heavily

modified landscapes. Current flow through agricultural pixels depended strongly on the type of

agriculture practiced at a given location and the intensity of human land use in the surrounding

landscape. Generally, agricultural lands supported greater current flow than developed areas,

suggesting an important role for agricultural lands as corridors linking areas of high-quality

habitat. As the human footprint continues to expand, moderately impacted landscapes such as

agricultural fields and grazing lands will be increasingly important movement habitat for many

species (Suraci et al. 2020). Identifying conservation opportunities on agricultural lands is

therefore critical to preventing further biodiversity loss while promoting long-term food security

(Kremen & Merenlender 2018; Leclère et al. 2020).

Our maps reveal that landscapes ranking in the highest quantile for both connectivity and PVR

constitute 10.2 Mha (approximately 3%) of agricultural lands across CONUS. These areas

represent key opportunities for ‘land-sharing’ programs that promote biodiversity and food

production on the same land holdings (Fischer et al. 2008, 2014; Kremen 2015; Garibaldi et al.

2021) by incentivizing wildlife-friendly farming practices (e.g., USDA’s Conservation

Stewardship Program and Environmental Quality Incentives Program [EQIP]) and protecting

agricultural lands against conversion to more intensive land uses (e.g., USDA’s Agricultural

Conservation Easement Program [ACEP]). Increasing the capacity for farmland in this ‘high

connectivity-high PVR’ category to support native species and wildlife movement - for instance,

by planting non-crop vegetation strips along field edges and increasing crop diversity (Kremen et

al. 2012) - may be critical for preserving connectivity in some areas of the U.S. and is consistent

with recent proposals to increase conservation efforts on private lands (e.g., the Biden

administration’s commitment to conserve 30% of U.S. lands by 2030; Exec. Order No. 14008,

2021). Importantly, recent work has shown that incorporating such wildlife-friendly farming

practices can stabilize (Gaudin et al. 2015) or even increase agricultural yields (Pywell et al.

2015), setting up the potential for biodiversity and food production ‘win-wins’ (Mitchell et al.

2013).
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Our model results also identified substantial amounts of agricultural land across CONUS that are

of high value for either connectivity (i.e., high connectivity-low PVR; 59.3 Mha in total) or food

production (i.e., low connectivity-high PVR; 81.3 Mha) but not both. Such landscapes are

particularly common in the Plains region, where large expanses of land with high PVR are

devoted to intensive crop production (thus limiting connectivity value), but are interspersed with

areas of less intensive agriculture on lower productivity lands. Such landscapes may be excellent

candidates for a combination of management policies that reflect a ‘land-sparing’ conservation

strategy (Phalan et al. 2011; Grass et al. 2019). Lands in the ‘low connectivity-high PVR’

category could be targeted for programs that keep lands in production and protect against

conversion to development (e.g., ACEP), thus safeguarding the most productive agricultural

lands. Meanwhile, neighboring areas in the ‘high connectivity-low PVR’ category could be

maintained as low-intensity agriculture (pasture or rangelands) through enrollment in programs

that support grazing (e.g., EQIP, CSP or USDA’s term-limited Grasslands Conservation Reserve

Program [CRP]) and/or through permanent easements (e.g., via ACEP). Where appropriate, such

areas could also be considered for removal from production in favor of ecological restoration to

support habitat and movement of native species (e.g., through USDA’s Conservation Reserve

Enhancement Program). Under such a conservation strategy, high-connectivity lands maintained

as low-intensity agriculture or removed from agriculture altogether can act as connectivity

‘stepping stones’ (Wimberly et al. 2018; Doherty & Driscoll 2018) to support species movement

through otherwise intensively managed landscapes and connect larger patches of high-quality

habitat (e.g., protected areas). It is critical that any such land-sparing strategy be implemented at

a relatively large spatial scale (i.e., across multiple land holdings within a region) to ensure

sufficient connectivity across a network of ‘spared’ habitat patches to support dispersal and patch

colonization and to prevent isolation of the larger protected areas that such habitat patches

connect (Lamb et al. 2016; Grass et al. 2019). For more details on the amounts of land falling

into each of the above described connectivity-PVR categories for all counties across the U.S., see

Appendix E

Spatial context plays a substantial role in determining the connectivity value of agricultural

lands. Our spatial regression analysis showed that, regardless of agriculture type, current flow on

agricultural pixels was highest when those pixels were embedded in a broader landscape
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consisting of large amounts of natural land cover. This finding is consistent with previous work

showing that biodiversity in agricultural systems tends to be higher in heterogeneous landscapes

consisting of a mix of agricultural and non-agricultural cover types (e.g., crop fields and pastures

interspersed with woodlots and riparian buffers) (Donald & Evans 2006; Fahrig et al. 2011;

Reynolds et al. 2018; Kremen & Merenlender 2018). By promoting connectivity, the presence of

natural land cover in agricultural systems can also directly benefit food production, providing

ecosystem services such as pollination and biological pest control through the (re)colonization

and spillover of service-providing organisms from natural to cultivated patches (Blitzer et al.

2012; Kormann et al. 2016; Grass et al. 2019). Therefore, maintaining or restoring natural

vegetation within agricultural systems is likely to have benefits across scales, promoting

biodiversity and the provisioning of ecosystem services at the local level of individual farms

while facilitating regional-scale connectivity across networks of working lands and protected

areas.

Structural connectivity models such as the one used here are typically aimed at describing

connectivity for a wide range of species (Dickson et al. 2017; Marrec et al. 2020) and perform

well in terms of their overlap with focal species connectivity models, particularly for

larger-bodied species or those with high movement capacity (Krosby et al. 2015). However, it is

important to note that our model was not calibrated to the movement or habitat preferences of

any particular focal species and thus may not fully capture the best movement pathways for a

given species of interest. An important next step for connectivity conservation on agricultural

lands will be to adapt the methods developed here in building connectivity models for focal

species of conservation concern. Our NDVI-based approach to capturing variation in

management intensity within a given agricultural cover type could readily be adapted to focal

species functional connectivity models. Researchers can use species distribution models (Keeley

et al. 2016) or resource selection functions (Zeller et al. 2014) to quantify the effect of

agricultural management intensity on species habitat suitability or probability of use and translate

these values into landscape resistance (Zeller et al. 2012; Suraci et al. 2020). Such efforts will be

important for species-level management and will likely reveal substantial diversity in the

capacity of agricultural lands to provide habitat value for individual species (Phalan et al. 2011;

Reynolds et al. 2018).
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We expect that our results will be useful in prioritizing conservation actions across a range of

scales. At the local level, farmers, land trusts, and conservation advocates can use information on

the joint value of agricultural lands for connectivity and food production to identify site-specific

conservation strategies (e.g., land sparing vs. sharing), explore the types of conservation-focused

financial incentives applicable to the landscapes they work in, and advocate for policies that

support the conservation of working lands. At the state and federal levels, agencies tasked with

administering agricultural conservation programs can use these results to better target funding to

areas likely to have the greatest impact for promoting biodiversity and food security, ideally

employing a landscape-scale approach that leads to heterogeneous agricultural-natural mosaics

that benefit both producers and native species (Kremen et al. 2012). To help facilitate planning

and conservation action based on our results, we have developed an interactive web application

(https://cspbeta.z22.web.core.windows.net/), allowing users to visualize the spatial data

developed here within their regions of interest. We hope that these tools can contribute to a

collaborative process between landowners, governments, and conservationists to design

landscapes that support both native species and a sustainable food supply.
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Appendix A. Supplementary methods

Defining growing season start and end dates for bounding NDVI time series data

For each U.S. state, we used the planting dates database developed by Sacks et al. (2010) to

extract the planting start date and harvest end date for a common crop type and used this as the

date range within which NDVI estimates were acquired for all cropland and pasture pixels in that

state. For consistency, we used corn as the crop type to define growing season dates for all states

where corn is grown. For states where corn is not grown, we used another spring-planted crop

represented in the database (spring barley in Nevada and potatoes in Maine, Massachusetts, and

Rhode Island). For states that are absent from the database (Connecticut, Vermont, and New

Hampshire), we used the planting start and harvest end dates for nearby states (in this case, other

states in the New England region).

Combining agricultural land use intensity with other human impacts

To create a comprehensive layer of human land use intensity across CONUS, we combined our

novel agriculture L layer with an existing L model (CSP 2019) that integrates multiple land use

variables into three human impact categories - urban (including data on residential development

and nighttime lights), transportation (including roads, railways, powerlines, and pipelines), and

energy (including oil and gas wells, coal mines, and utility-scale solar and wind installations) -

with each category stored as a separate raster layer. For full details on the existing L layers,

including dataset selection and assignment of land use intensity values, see CSP (2019). We

combined these three layers with the new agriculture layer into a single land use intensity surface

describing the impact at a given location (Lloc; ranging between 0 and 1) using the “fuzzy

algebraic sum” (Theobald 2013). This algorithm ensured that the combined value for a given

pixel was always at least as high as that of the most intense disturbance type, but that pixel

values never exceeded 1. The fuzzy algebraic sum is given by

,𝐿
𝑙𝑜𝑐

= 1 −
𝑗=1

𝑘

∏ 1 − 𝐿
𝑗( )
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where Lj is the land use intensity for a given land use type j (i.e., urban, transportation, energy, or

agriculture), where j = 1…k disturbance types (Theobald 2013).

Finally, we incorporated the impact of nearby land uses and disturbances on a given location

(Ries et al. 2004) by allowing the value of each pixel in our Lloc surface to extend beyond the

focal pixel itself. We created a new surface of ‘neighborhood’ land use intensity, Ln, by allowing

each pixel’s Lloc value to decay with distance, halving every 500 m out to a maximum distance of

10 km (Theobald et al. 2012; CSP 2019). We then combined Lloc and Ln to produce our final land

use intensity layer (Lall), again using the fuzzy algebraic sum, i.e.,

𝐿
𝑎𝑙𝑙

 = 1 − ((1 − 𝐿
𝑙𝑜𝑐

) * (1 − 𝐿
𝑛
)).  

Summarizing current flow values across regions and land cover/land use types

We summarized cumulative current flow values from the Omniscape model within regions

defined by the USDA Agricultural Research Service (ARS), providing an overview of

large-scale differences in agricultural land contributions to connectivity across the country. We

calculated the mean and standard deviation of current flow across all agricultural land pixels

within each region and also estimated the overall importance of agricultural lands to connectivity

in the region. For the latter, we first calculated the upper quartile (i.e., top 25%) value of current

flow for all pixels in a given region, regardless of land cover/use type, and then calculated the

proportion of those top current flow pixels that occurred on agricultural lands.

We compared current flow on agricultural lands with current flow on other land cover/land use

types by first sampling current flow values at > 385,000 random points distributed across

CONUS. We classified each random point as falling into one or more of the following

categories: cropland, pasture, rangeland, woodland, or all agriculture (i.e., any one of the

previous four categories), based on the FUT 2016 land cover layer (CSP 2020); low density

development, based on the 2016 National Land Cover Data Base (NLCD; Dewitz 2019) (NLCD

classes: ‘developed, open space’ and ‘developed, low intensity’ categories); high density

development (NLCD classes: ‘developed, medium intensity’ and ‘developed, high intensity’

categories); natural land cover (all NLCD non-agricultural vegetation categories, i.e., cover
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classes 41-74 and 90-95); and protected areas (all public lands in the USGS Protected Areas of

the US Database v2.1(USGS 2020) categorized as GAP status 1 or 2, i.e., permanently protected

and managed for natural land cover). Agricultural, developed, and natural land categories were

mutually exclusive, and we gave preference to FUT agricultural land cover classes where these

overlapped with low density development or natural lands. Other categories were non-exclusive;

for instance, some natural land pixels were also in protected areas and vice versa. Random point

sampling and extraction were conducted in GEE.

Spatial error regression of the effect of surrounding land cover on agricultural land current flow

To further explore the drivers of high or low connectivity values on agricultural lands, we also

estimate the total amount of natural land cover and development (low and high density

development categories combined) within a 1-km radius of each location on agricultural lands,

hypothesizing that agricultural lands surrounded by greater amounts of natural land cover and

lower levels of development would tend to have higher current flow. This was done for 40,000

randomly selected points on agricultural lands across CONUS (10,000 each for cropland,

pasture, rangeland, and woodland). We tested the effect of surrounding land cover/land use on ag

land current flow using spatial error regression (Dale & Fortin 2014), modeling current flow as a

function of the amount of natural land within 1 km, the amount of developed land within 1 km,

and second degree polynomial terms for amounts of natural and developed land to accommodate

non-linearity in the response of current flow values to local land cover/use. We also fit a term for

agricultural land cover type (categorical: crop, pasture, range, woodland) as well as terms for the

interaction between agriculture type and the linear and polynomial effects of the amount of

natural land and developed land within 1 km. All predictor variables were mean centered and

continuous variables were scaled by one standard deviation prior to model fitting. Current flow

values were square root transformed to normalize the spread of data. Prior to model fitting, we

confirmed that there was limited correlation between continuous covariates (Pearson’s

correlation coefficient for amount of natural and developed land: r = 0.11). We defined spatial

neighbors between the randomly sampled ag land points via Delauney triangulation and

calculated a spatial weights matrix using row standardization (Bivand et al. 2013). We fit spatial

error models using the simultaneous autoregression (SAR) approach (Dale & Fortin 2014) and
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tested for remaining spatial autocorrelation in the SAR model using Moran’s I. Spatial error

models were fitted using the spdep and spatialreg packages in R (R Core Team 2021). In

addition to a full model including all terms described above, we fit seven reduced models using

subsets of the above terms as well as a null (intercept only) model (nine models total; see

Appendix D, Table D1). We compared all models using a model selection approach and Akiake’s

Information Criterion (AIC; Burnham & Anderson 2002).

Agricultural land productivity, versatility, and resilience (PVR)

Agricultural land productivity, versatility, and resilience (PVR) is a CONUS-wide, 10-m

resolution data layer describing the long-term sustainability of maintaining a given area in

cultivation or other forms of production and is based on soil and land cover characteristics and

the type of agriculture practiced at a given location circa 2016. Though technically a snapshot in

time, PVR explicitly considers the potential for future disruptions of existing food production

systems, thus identifying the “best” agricultural lands for long-term food security. Full details on

the calculation of PVR are provided in the peer-reviewed technical documentation accompanying

the Farms Under Threat analysis (CSP 2020). Briefly, PVR was calculated as the weighted sum

of several (standardized) indicator layers representing soil productivity, land cover and use, food

production for direct human consumption, and growing season length. The indicators included

and their assigned weights were determined through formal expert elicitation in which 33

agriculture experts from across the U.S. participated in a structured process based on decision

analysis theory (Saaty 2008). The values of the resulting PVR layer ranged between 0 and 1

(CSP 2020).
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Appendix B. Validating the relationship between vegetation index variability and

management intensity

Previous studies have found that time series of Normalized Difference Vegetation Index (NDVI)

data are strongly related to management intensity in agricultural systems subject to frequent

harvest/mowing and fertilizer inputs (Franke et al. 2012; Gómez Giménez et al. 2017). To test

whether this relationship holds for agricultural lands across the conterminous U.S., we compared

our NDVI coefficient of variation metric (cvNDVI, see main text) (1) between agricultural land

cover types; (2) within a given land cover type across a gradient of nitrogen fertilizer input; and

(3) between irrigated, unirrigated, and fallow cropland. We began by recalculating cvNDVI for a

single year (rather than the five-year timespan used in the full analysis) to better match cvNDVI

estimates to the particular crop type and fertilization and irrigation regimes used in a given year.

For this validation analysis, we chose the year 2015 to match available fertilization and irrigation

datasets (described below). We calculated 2015 cvNDVI for all agricultural cover types (not just

cropland and pasture as in the full analysis) to allow comparison between cover types. For each

of the four cover types, we randomly selected 20,000 locations across CONUS and extracted

2015 cvNDVI values at each point. For cropland and pasture points, we also extracted estimates

of nitrogen fertilizer use in the year 2015 from a 5-km resolution layer developed by Cao et al.

(2018). For cropland points, we extracted the crop type planted in 2015 based on the USDA’s

Cropland Data Layer (CDL) for that year, as well as a binary indicator of whether each cropland

point was irrigated or not using a 30-m resolution dataset on irrigation extent across CONUS in

the year 2015 (Xie & Lark 2021).

We visually compared the range of cvNDVI values between the four agricultural cover types

using density plots, hypothesizing that cropland would exhibit a broader range of values than the

other cover types given the potential for greater management intensity on croplands through

irrigation, fertilization, multiple crop cycles, etc. Focusing on just cropland and pasture points,

we used a spatial regression model (Dale and Fortin 2014) in an ANCOVA framework to test for

effects of cover type (crop or pasture), amount of nitrogen fertilizer used, and their interaction on

cvNDVI while accounting for spatial autocorrelation arising from proximity of randomly

selected locations. Data on nitrogen fertilizer use were mean centered prior to model fitting. We
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defined spatial neighbors between the randomly sampled points using Delauney triangulation

and calculated a spatial weights matrix using row standardization (Bivand et al. 2013). We fit

spatial error models using the simultaneous autoregression (SAR) approach (Dale & Fortin 2014)

and tested for remaining spatial autocorrelation in the SAR model using Moran’s I. Spatial error

models were fitted using the spdep and spatialreg packages in R (R Core Team 2021).

Finally, examined the relationship between crop management intensity and cvNDVI for cropland

points. For this analysis, we subsetted our dataset to just those cropland points that were planted

as corn, soybeans, or wheat in 2015 (the three most common crop types in our dataset) or were

left fallow, as determined by the 2015 CDL. We coded each point as falling into one of three

management intensity categories - fallow, unirrigated crop, and irrigated crop - and again fit a

spatial error model (using the procedure just described) testing the effect of cropland

management intensity on cvNDVI. We compared means and 95% confidence interval (CI) values

of cvNDVI from the spatial error model between each of the three management intensity

categories.

We found that our estimate of vegetation cover variability (cvNDVI) performed well as a proxy

for agricultural land management intensity. Across all randomly selected points, cropland, the

cover type typically associated with the highest level of anthropogenic activity, had cvNDVI

values that tended to be higher and more variable than those of all other agricultural cover types

(Fig. B1).
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Figure B1. Density plot of the distribution of vegetation cover variability

(estimated as the coefficient of variation of Normalized Difference Vegetation

Index values, or cvNDVI) across all random points for each agricultural cover

type.

The spatial error SAR model on nitrogen fertilizer and land cover type sufficiently accounted for

spatial autocorrelation in the residuals (Moran’s I = -0.05, p = 0.99). The model revealed that

cropland has on average a significantly higher cvNDVI than pasture and that, for both cover

types, cvNDVI is positively related to nitrogen fertilizer usage but increases more quickly with

fertilizer amount on cropland than on pasture (Fig. B2, Table B1).
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Figure B2. Relationship between nitrogen fertilizer usage and variation in

vegetation cover (cvNDVI) on cropland (green) and pastureland (blue).

Trend lines are fitted values from a spatial error regression model. For

both agricultural cover types, increasing fertilizer usage is positively

associated with cvNDVI, but with higher slope for cropland (Table B1).

Table B1. Spatial error regression analysis results for the effects of agricultural land cover type

and nitrogen fertilizer use on variation in vegetation cover (cvNDVI).

Estimate SE P-value

Intercept (Cover = Crop, Fertilizer = 0) 0.2996 0.0013 < 0.001

Cover type (Pasture) 0.0158 0.0003 < 0.001

Fertilizer -0.0921 0.0011 < 0.001

Cover type x Fertilizer -0.0095 0.0004 < 0.001

The spatial error SAR model on cropland management intensity sufficiently accounted for spatial

autocorrelation in the residuals (Moran’s I = -0.07, p = 0.99) and revealed that more intensively

managed cropland locations exhibited higher cvNDVI. Fallow fields had the lowest average

cvNDVI, followed by unirrigated crops, with irrigated crops having the highest cvNDVI.

Ninety-five percent confidence intervals, estimated by the spatial error model, did not overlap

between management intensity categories (Fig. B3).

Conservation Science Partners 31 | Page



Figure B3. Mean (± 95% CI) values of vegetation cover

variability (cvNDVI) for fallow agricultural fields, unirrigated

crops, and irrigated crops. Means and CIs were calculated from

a spatial error regression model.
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Appendix C. Sensitivity of connectivity model results to resistance surface scaling and

moving window size.

Connectivity model results are driven by the relative resistance values applied to different land

cover types (Zeller et al. 2012). In the case of structural connectivity models based on estimates

of the degree or intensity of human land use at each location across the study area, the scaling

function used to convert land use intensity to resistance is therefore a key consideration. For the

analyses presented in the main text, we followed Dickson et al. (2017) in calculating resistance

(R) from human land use intensity (L) as

R = (L + 1)10 + s/4,

where s is the percent slope of a given pixel (see main text for additional discussion and

justification of this scaling function). The above rescaling formula led to a relatively high

contrast between the resistance values assigned to locations with low, medium, and high L values

(Dickson et al. 2017). It was not our goal here to conduct a comprehensive sensitivity analysis of

the effects of different scaling functions on resistance and connectivity; this analysis has already

been conducted by Dickson et al. (2017) using a human land use intensity layer derived via very

similar methods to those employed here. For comparison, however, we derived a second

resistance surface using a low-contrast rescaling formula suggested by Marrec et al. (2020):

R = 1 + (1000 * L2) + (s/4).

We then used this new, low-contrast resistance surface to fit a connectivity model in Omniscape,

keeping all other model inputs and parameters (e.g., moving window radius, source strength

surface) the same as those of the model presented in the main text.

The maximum distance between current flow start and end points is another key assumption of

circuit theory-based connectivity models, controlled in Omniscape models by the radius of the

moving window used to calculate current flow between source and target locations (McRae et al.

2016; Landau et al. 2021). In connectivity analyses focused on particular species or guilds, this
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value is often set to the maximum (or average) movement or dispersal distance of that species or

guild (e.g., Littlefield et al. 2017; Jennings et al. 2020). Here we were interested in modeling

potential connectivity for a wide range of species as an estimate of ecological flow. We therefore

chose to use a moving window radius comparable to the upper dispersal distances of many

large-bodied terrestrial vertebrates (Sutherland et al. 2000) under the assumption that landscapes

capable of supporting the movements of species with large space requirements will also support

the movement of less vagile species. However, for comparison, we also fit connectivity models

using two smaller moving window radii, (i) 20 km, comparable to the maximum dispersal

distance of many medium sized mammals (Sutherland et al. 2000), and (ii) 5 km, approximating

maximum dispersal distances for small vertebrates such as amphibians; (Marsh & Trenham

2001). For the connectivity models with smaller moving window radii, we kept all model inputs

(i.e., resistance and source strength surfaces) the same as for the model presented in the main

text, but varied the block size parameter to better match the moving window sizes used.

Omniscape block size controls the density of pixels in a landscape raster that can potentially be

treated as targets for current flow and can be used to decrease computation time with large

landscape rasters (Landau et al. 2021). If block size = 1, all pixels are treated as potential targets

(as long as source strength at the pixel is nonzero), with block size = 3, every third pixel is a

potential target, and so on. We set block size to 21 for the 20-km model and 3 for the 5-km

model. All models described here were based on 250-m resolution rasters.

To test the robustness of our conclusions regarding the relationship between current flow and

land cover/use to model assumptions, we used the procedure described in the main text to extract

current flow values for our primary connectivity model (i.e., the one presented in the main text)

and for each of the three comparison models (i.e., the low-contrast, 20-km, and 5-km models) at

> 385,000 random points distributed across the conterminous US (CONUS). Each point was

assigned to one or more of the following land cover/use categories: cropland, pasture, rangeland,

woodland, all agriculture, low density development, high density development, natural land

cover, and protected areas (see main text for details). For each land cover/use category, we

calculated Spearman’s rank correlations (⍴) between current flow values from the primary model

and those from each of the three comparison models. We also calculated the average current flow

value for each land cover/use category under each model and compared the rank order of current

Conservation Science Partners 34 | Page

https://www.zotero.org/google-docs/?mWDQca
https://www.zotero.org/google-docs/?GxOrcU
https://www.zotero.org/google-docs/?Wa9iqw
https://www.zotero.org/google-docs/?X9mhgX
https://www.zotero.org/google-docs/?X9mhgX
https://www.zotero.org/google-docs/?YrhXTS


flow values across categories between the primary model and each of the comparison models

using Spearman’s rank correlations.

Correlation coefficients for each comparison are shown in Table C1 and suggest that model

assumptions regarding the scaling function used to create the resistance surface and the size of

the Omniscape moving window have relatively limited effects on the relationship between land

cover/use and current flow. For all comparison models, land cover rankings were highly

correlated with those of the primary model (⍴ ≥ 0.99). For individual land cover classes,

current flow values derived from the primary model were typically strongly correlated

with those derived from each of the three comparison models (Table C1), with the

weakest correlations being for the high density development class with the 20-km (⍴ =

0.68) and 5-km (⍴ = 0.59) models.

Table C1. Spearman’s rank correlations (⍴) between current flow values derived from the

primary connectivity model (i.e., the model presented in the main text) and each of the

three comparison models (described above) for each land cover/use category. The bottom

row presents correlations for the rank order of average current flow values for each land

cover/use category.

Land cover/use category

Low-contrast

scaling, ⍴

20 km moving

window, ⍴

5 km moving

window, ⍴

Cropland 0.89 0.89 0.84

Pasture 0.93 0.91 0.86

Rangeland 0.92 0.88 0.80

Woodland 0.95 0.92 0.87

All agriculture 0.95 0.95 0.92

Development, low density 0.94 0.87 0.83

Development, high density 0.91 0.68 0.59

Natural 0.92 0.89 0.82

Protected areas 0.91 0.83 0.71

All categories, ranked 0.99 0.99 1.00
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Finally, we mapped current flow across the CONUS for each of the three comparison models

(Fig. C1), highlighting differences between models in the relative intensity and concentration of

current flow. Current flow tended to be more diffuse in the 20-km and 5-km models relative to

the low-contrast model (which used a 150-km moving window radius), reflecting the shorter

movement distances allowed in the 20-km and 5-km models.

Figure C1. Current flow maps derived

from each of the three comparison

connectivity  models described in

Appendix B: (a) the low-contrast

model, (b) the 20-km model, and (c)

the 5-km model. Current flow is

proportional to the potential net

movement of organisms through a

given location on the landscape.
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Appendix D. Supplementary tables and figures

Table D1. Model selection table for the spatial error regression model describing the effects of surrounding land

cover/land use on agricultural land connectivity. The response variable in all models was the square root of current

flow sampled at 40,000 random locations on agricultural lands across the conterminous United States. nat = amount

of natural land within 1 km of the sampled location. dev = amount of developed land within 1 km of the sampled

location. ag type = agricultural land cover class (cropland, pasture, rangeland, or woodland, as defined in the main

text). Developed and natural land cover/use categories are based on the 2016 Nation Land Cover Database and

defined in the main text.

Model formula

Degrees of

freedom AIC ΔAIC

nat + nat2 + dev + dev2 + ag type + nat * ag type + nat2 *

ag type + dev * ag type + dev2 * ag type 22.0 194303.3 0.0

nat + dev + dev2 + ag type + nat * ag type + dev * ag type

+ dev2 * ag type 18.0 194417.5 114.3

nat + nat2 + dev + dev2 + ag type + dev * ag type + dev2 *

ag type 16.0 194459.0 155.7

nat + nat2 + dev + dev2 + ag type + nat * ag type + nat2 *

ag type 16.0 194716.0 412.8

nat + nat2 + dev + ag type + nat * ag type + nat2 * ag type

+ dev * ag type 18.0 194738.0 434.7

nat + dev + ag type + nat * ag type + dev * ag type 14.0 194880.9 577.7

nat + nat2 + dev + dev2 + ag type 10.0 194935.2 632.0

nat + dev + ag type 8.0 195342.7 1039.5

null model (~ 1) 3.0 207905.0 13601.7
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Table D2. Summary of landscape resistance and current flow values on agricultural lands (cropland, pasture,

rangeland, and woodland, as well as all agricultural categories combined) compared to values in developed areas and

natural landscapes. Developed and natural land cover/use categories are based on the 2016 Nation Land Cover

Database and defined in the main text. Protected areas are USGS GAP 1 and 2 protected areas. Resistance and

current flow values are presented as means (standard deviations).

Land cover and use category Resistance Current flow

Cropland 372.1 (202.1) 91.1 (56.0)

Pasture 217.9 (168.1) 133.4 (84.4)

Rangeland 65.1 (101.2) 226.6 (92.9)

Woodland 149.1 (152.3) 169.6 (105.9)

All agriculture 208.7 (211.2) 158.8 (101.5)

Development, low density 324.6 (247.6) 131.2 (147)

Development, high density 490 (202.5) 59.5 (53.3)

Natural 39.9 (112.3) 378.5 (196.6)

Protected areas 44.5 (161.7) 401.2 (194.8)

Figure D1. Map of landscape resistance across the conterminous United States
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Figure D2. The range of current flow on agricultural lands (cropland, pasture, rangeland, and woodland, as well as

all agricultural categories combined [‘all ag’]) is compared to that of developed areas and landscapes characterized

by more natural land cover types (i.e., all natural lands and those within USGS GAP 1 or GAP 2 protected areas).

Data are shown as standard boxplots with whiskers representing 1.5 times the interquartile range. Outliers are shown

as points.
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Appendix E. Amount of land in each connectivity-PVR category by US county

This data table (appended separately) quantifies the total number of acres of agricultural land in
each county across the U.S. that fall into each of the key categories identified in our overlay
analysis of connectivity value and productivity, versatility, and resilience (PVR) of agricultural
lands (see main text and Figure 4 for more details). These categories are: (1) high value for
connectivity with low PVR (coded HH_acres in the data table), (2) high connectivity with low
PVR (HL_acres), (3) and low connectivity with high PVR (LH_acres). The total acres of
agricultural lands in each county (agAcres) are also reported.
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