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1. Introduction 

This document describes the methods used to generate spatial projections of (1) the future suitable 
geographies of three indicator crops, (2) the future suitable geographies of broadly defined agricultural 
land use classes, and (3) areas inundated due to future sea level rise. Projections of each were generated 
for two climate change scenarios—IPCC Representative Concentration Pathways (RCPs) 2.6 and 8.5—in 
the years 2020, 2040, and 2060. These projections support American Farmland Trust’s Farms Under 
Threat (FUT) data series and our description of them presumes basic familiarity with past FUT research 
products and reports.  We based the decision to generate spatial projections out to 2060 on the assumption 
that we might not see significant changes until 2050. However, this was not the case and the model 
showed significant changes by 2040.  Since it is much more difficult to interpret the 2060 projections, the 
FUT products and reports focus on the changes by 2040. The data set generated using the methods 
described in this document include: 
 

• Projected apple, corn, and winter wheat suitability in 2020, 2040, and 2060 under RCPs 2.6 and 
8.5. Suitability here is defined as the “probability of cultivation” such that values range from 0 to 
1 and is not an indication of expected yield or productivity. Corn and winter wheat projections 
reflect expected rain-fed geographies whereas projected apple geographies are agnostic to water 
source. 

• Projected cropland, rangeland, pastureland, and other land use suitability in 2020, 2040, and 2060 
under RCPs 2.6 and 8.5. Again, suitability is defined here as the probability of a given land use 
class being present such that values range from 0 to 1. Projected geographies for these land use 
classes reflect un-irrigated conditions. 

• Changes in suitability for the above crops and land use classes from 2020 to 2040 and 2020 to 
2060. 

• Estimates of “the most” suitable geographies of apple, corn, and winter wheat in 2020, 2040, and 
2060 under RCPs 2.6 and 8.5. These are simply binary (yes/no: 1, 0) projections, representing 
areas with the highest suitability. The suitability cut-off used was crop-specific and based on 
where a given crop currently occurs. 

• Projected land use classes (cropland, pasture, rangeland, other) in 2020, 2040 and 2060 under 
RCPs 2.6 and 8.5 These projections are based on the aforementioned land use suitability 
projections and take the form of classified maps wherein each pixel is assigned to the most 
probable land use class. 

• Geographies of sea-level rise inundation in 2020, 2040, and 2060 under RCPs 2.6 and 8.5.  

 

In what follows, we describe the methods used to generate each of these projections and, where 
possible, provide supporting validation statistics. 

 



 

2. Methods 

2.1. Crop-specific Suitability Modeling 

Our goal was to assess and illustrate how climate change will affect the US geographies of three 
regionally and nationally important indicator crops in 2040 and 2060, relative to 2020. Climate-driven 
shifts in crop suitability are akin to climate-driven species range shifts and can be assessed using similar 
methods. Various types of species distribution models (SDMs) have been used to assess species range 
shifts and vary in terms of the outcomes they aim to predict, the biological processes they address, and the 
ways in which they address those processes (Elith and Leathwick 2009, Briscoe et al 2019). Questions of 
‘suitability’, per se, generally don’t require the treatment of these latter biological mechanisms and can 
thus be addressed using correlative approaches that relate presence/absence (P/A) data to spatially 
resolved covariates. Once specified, these models—sometimes referred to as “niche models”—can be 
applied to projections of those covariates to predict suitability under alternative climate regimes (e.g. 
Rehfeldt et al 2012). 

We used random forest models (Breiman 2001) as correlative SDMs to assess how the 
probabilities of cultivating various indicator crops change in space and over time in response to global 
climate changes. Our models relate observed recent geographies of a crop or land cover’s presence, as 
indicated by various spatial data sources, to its co-occurring biophysical conditions. They ignore more 
dynamic, non-biophysical attributes of current plantings like socioeconomic factors and management 
practice for which future changes caused by climate changes cannot be known. We use these P/A and 
biophysical relationships to predict future crop geographies under various climate projections at select 
points in future time. In practice, this approach entails four sequential steps: 

1. Generating a large, comprehensive set of high-quality training data representing the 
known P/A of a given crop; 

2. Relating these locations to a suite of gridded covariates; 
3. Using these data (and the relationships therein) to specify a random forest model that 

accounts for the relationships between P/A geographies and their covariates, used here as 
predictors; and 

4. Spatially applying this model to gridded projections of the considered covariates to 
predict suitability at a future time. 

2.1.1. Training Data Selection 

We used the USDA Cropland Data Layer (CDL) to infer the current suitable geographies of each 
of our focal crops. The CDL is the most exhaustive and accurate remotely sensed crop type map of its 
kind due to its basis in a classifier trained using a well-matched, non-public spatial dataset of annual, 
farmer reported crop type locations (the USDA Common Land Unit). It is produced annually at a 30-m 
resolution for the conterminous US and has remarkably high user’s accuracy for many crops including 
those we focus upon in this analysis: apples, corn, and winter wheat (Lark et al 2017, 2021). In addition, 
the CDL is accompanied by a confidence layer that we used to filter training points such that we only 
consider those that are most confidently indicative of a focal crop’s presence. The CDL allows us to infer 



 

conditions in which a crop is biophysically suited for production based on the geographic location of its 
observed presence.  However, as discussed below, it is an imperfect approximation—one akin to inferring 
a species fundamental niche from its realized niche. As such the regions we predict to be suitable using 
this approach are almost certainly conservative as they additionally and implicitly reflect to unknown 
degrees non-biophysical factors such as infrastructure and economic constraints. 

The predictions of correlative models are particularly sensitive to the quality of the 
presence/absence (P/A) data upon which they are trained (Hengl et al 2018). Ideally, training data for 
suitability modeling should encompass the full range of conditions that a given crop can tolerate. This 
ideal is challenged by the fact that crops are not always planted in all the regions in which they are suited, 
nor are they exclusively planted in areas in which suitability is high. We can reasonably infer that the 
conditions associated with locations where a crop is observed are tolerable to that crop. The corollary, 
though, is less trivial. Crops may be absent from a location either because it is biophysically intolerable or 
because socio-economic factors have precluded it from being planted there. For this reason, we cannot be 
certain that a crop’s observed domain truly represents its full range of biophysical tolerances, nor can we 
assume the reason for a crop’s apparent absence. P/A issues have long plagued all SDMs and ultimately 
require specialized treatment (Elith and Leathwick 2009, Briscoe et al 2019). For our application, these 
treatments include selecting focal crops for which we can reasonably assume that locations of observed 
presence encompass a broad swatch of the crop’s full range of suitability and proactively seeking to 
resolve P/A ambiguities where possible. Nevertheless, these measures remain imperfect. While they may, 
for example, redress most P/A concerns for economically dominant crops like corn whose range of 
dryland production maps well to its actual suitability; but, for other crops like winter wheat, its absence 
may simply reflect the presence of an economically more dominant crop like corn, rather than 
inhospitable biophysical conditions. Thus, while we endeavor to address such issues where possible, the 
underlying complexity of crop-choice inhibits our ability to do so and this caveat should be considered 
when interpreting our projections. 

Crop rotations are one ubiquitous factor in annual cropping systems that can contribute to the 
apparent absence of a crop in an otherwise suitable location simply because the crop’s position in a crop 
rotation did not coincide with the year in which the P/A observation was made. To address this issue, we 
considered 5 years of crop P/A when selecting training data from the CDL. To do so, we stacked five 
consecutive years of CDL to reconstruct crop rotations and retain all field locations in which a focal crop 
was planted at least once, thereby considering these areas to have been suitable for that crop. Further, as 
with all remotely sensed products there is noise in the CDL classifications such that there may be stray 
single pixels that erroneously suggest the presence of a given crop when it was in fact never there. To 
further address this particular issue, we filtered the presence patches attained from the rotational analysis 
to only retain patches of at least one hectare in area (10 contiguous pixels). Finally, we considered the 
CDL’s corresponding confidence associated with a focal crop’s detected presence and removed from 
consideration those with a confidence score below 90%. Collectively, these treatments should more 
inclusively assess presence while preventing false positives that may result from noise and 
misclassification. 



 

Once patches of recent presence were identified, for corn and winter wheat, we further filtered 
out those known to be irrigated using the annual irrigation maps of Xie et al (2021) and the USDA’s 
Census of Agriculture (CoA). Irrigation represents an infrastructural investment meant to decouple 
suitability from variation or change in climatic suitability. The inclusion of irrigated locations in our 
training dataset would likely confound our predictions by, for example, suggesting that arid regions may 
be suitable without explicitly acknowledging that such predictions are predicated on the use of irrigation 
infrastructure that may or may not actually exist. By omitting irrigated locations from our training set, our 
suitability predictions thus represent the suitability of rain-fed crops. After experiment with the data of 
Xie et al. (2021) we found that, in some arid regions, it failed to completely mask out all irrigated 
croplands and that the presence of these instances—albeit rare—was suggesting high suitability in 
locations for which no rainfed instances of the crop were observed. To address this, we further filtered the 
training data set by removing any remaining instances of crop presence from counties in which the CoA 
reported that 50% or more of the given crop was irrigated in the given county. Based on qualitative 
assessment, this additional filter appeared to effectively reduce instances of spurious prediction. Apples 
were excluded from this filter as it was determined that the majority of commercial apple production is 
irrigated. By retaining all apple areas in our training set, it should be assumed that projected geographies 
presuppose the use of irrigation where necessary. 

While the CDL is available through 2020, the irrigation maps of Xie et al. are only available 
through 2017 and thus constrained which years could be used to train the models. As such, we used 2015 
as the training year and additionally considered the two years immediately preceding and following 2015 
(2013-2017) to account for the potential confounding effects of rotations. The Census of Agriculture is 
conducted and reported every five years and the most proximate years to our training period were 2012 
and 2017. When determining how much of a county’s crop was irrigated, we assigned each county the 
highest value among the two years. 

The steps described to this point generated binary maps of each crop’s P/A circa 2015. To train 
the model we needed to generate a sample of these locations and, at those locations, extract covariate 
information. Because these locations are used to infer the range of each crop’s biophysical tolerances, it is 
imperative that a sampling strategy be used that captures less common, but nonetheless real, conditions to 
carefully define the extremes of these ranges. To best ensure that our training set was inclusive to this 
effect, we used a stratified sampling scheme wherein we sampled an equal number of points from each 
strata. Our strata were derived from the gridded covariates described in the section below using k-means 
unsupervised classification such that each strata represents a region of covariate similarity. We generated 
50 strata and then further stratified each using the P/A layers described above for a total of 100 strata (50 
representing areas in which the focal crop was observed and 50 representing its absence). These strata can 
be viewed in Figure 1 wherein each is randomly assigned a unique color for visualization.  

 



 

 

Figure 1. Strata (n = 50) used to stratify our random sample when training and validating our 
models. Each strata represents a region of covariate similarity as inferred from k-means 
unsupervised classification. 

 

We aimed to sample 300 point locations within each stratum for corn and winter wheat and 500 
for apples (apples required more because there were fewer acres of presence and thus, given the lower 
success rate, greater sampling effort was required to ensure an adequate sample size). The final P/A 
sample size for all crops is reported in Table 1. 

 

Table 1. Compositional summary of the training data used for each of the crop-specific models. 
Due to computational constraints we aimed to attain ~30,000 points total for each crop. Because a 
given crop was sometimes not present in some strata, there were less ‘presence’ points than 
‘absence’ points for all three crops. 

Crop Presence Points Absence Points Total Points 

Apples 7,617 25,000 32,617 

Corn 11,246 15,000 26,246 

Winter Wheat 12,710 15,000 27,710 

 



 

2.1.2. Gridded Covariates 

As introduced above, our models predict a crop’s P/A probability based on the corresponding 
values of gridded biophysical covariates representing climate, soil, terrain, and orbital properties.  

We used the climate projections of NASA’s Earth Exchange (NEX) Downscaled Climate 
Projections (NEX-DCP30) for each of the representative concentration pathways (RCPs) 2.6 and 8.5. 
These projections represent ensemble statistics of the 33 general circulation models used in the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) and have been downscaled to a 30 arc second resolution 
for the conterminous US. The NEX-DCP30 dataset includes projections of three distinct climate 
variables: (i) monthly mean of the daily precipitation rate, (ii) monthly mean of the daily minimum near 
surface air temperature, and (iii) monthly mean of the daily maximum near surface air temperature. These 
projections are forecasted from 2006 to 2099 at annual increments for all RCPs. From these NEX-DCP30 
variables, we further derived functionally important climate metrics as summarized in Table 2.  

 

Table 2. Gridded covariates are used to train and spatially execute all our suitability models. 

Category Source Temporal 
Resolution 

Variable 

Soil gNATSGO Static • Bulk density 

• Cation exchange capacity 

• Clay (%) 

• Depth to restrictive layer 

• Electrical conductivity 

• Organic matter content 

• pH 

• Sand (%) 

• Water holding capacity 

Terrain National Elevation 
Database (NED) 
[derived] 

Static • Aspect 

• Elevation 

• Slope 



 

Orbital Sunrise equation 
[derived] 

Static • Maximum day length 

Climate NEX Bimonthly average 
(Jan-Feb; Mar-Apr; 
May-Jun; Jul-Aug, 
Sep-Oct; Nov-Dec) 

• Mean daily precipitation 

• Mean minimum surface temperature 

• Mean maximum surface temperature 

NEX [derived] 

 

 

Bimonthly average 
(Jan-Feb; Mar-Apr; 
May-Jun; Jul-Aug, 
Sep-Oct; Nov-Dec) 

• Potential evapotranspiration 
(Thornthwaite approximation) 

• Aridity index 

Annual • Growing degree days (base temp: 10) 

• Extreme degree days (base temp: 30) 

• Total precipitation 

• Standard deviation of monthly mean 
daily precipitation 

• Mean of monthly mean surface 
temperature range 

• Standard deviation of monthly 
maximum surface temperature 

• Standard deviation of monthly 
minimum surface temperature 

 

Since NEX-DCP30 projections are forecasted from 2006, we trained our models using the mean 
of a location’s 2013-2017 projections under RCP 8.5—which most closely tracks observed climate 
change to date (Schwalm et al 2020). This prevents inconsistences that might have arisen had we instead 
trained our models using one set of climate observations and then applied it to a separate set of modeled 
projections.  

Whereas climate variables were based on NEX projections, soil and terrain variables were 
assumed to remain static over the relatively brief interval of time captured by our analyses. All soil 
variables were taken from the gNATSGO and, with the exception of “depth to restrictive layer,” represent 



 

conditions in surface soils (0-30 cm depth). gNATSGO contains data voids for some variables which we 
filled using a nearest-neighbor approximation. 

Terrain variables were derived from the National Elevation Database, a 10m resolution digital 
elevation model for the conterminous US. 

In practice, at each of the training points derived above, we extracted the corresponding values of 
all 50 of these covariates and joined them to the points as attributes. These data were then used to train the 
predictive models as described below. 

2.1.3. Model specification and refinement. 

The data generated above were used to specify and develop random forest models for each crop. 
Random forest is a machine learning method that identifies relationships between a dependent variable 
and any number of supplied covariates by generating and then averaging an ensemble of decision or, in 
this case, regression trees. This ensemble can then be used for prediction like any decision/regression 
model by supplying values for each of the covariates—the returned value is the average of the values 
produced for the supplied set of covariates by each of the trees within the ensemble. There exist a 
growing number of studies that employ this method for agricultural suitability and yield estimation (e.g. 
Hoffman et al 2020, 2018, Lark et al 2020). 

When developing a random forest model, users must specify the number of trees and the number 
of variables that are considered at each split in those trees. To some extent, the model’s accuracy is 
sensitive to these parameters and they can be refined experimentally to reduce prediction error. For each 
crop, we exhaustively assessed the error of all specifications ranging from 0 to 500 trees and with 1 to all 
variables being considered at each split. We ultimately selected the configuration that produced the lowest 
error. Error, in this case, was determined by randomly splitting the training set of a given crop such that 
80% of points were used for training and the remaining 20% were withheld to be used for independent 
validation. Because our models are predicting a probability ranging from 0 to 1 whereas our training data 
are binary 0 = absences, 1 = presence, we converted our probability estimates to binary for model 
evaluation [only] by assuming values greater than or equal to 0.5 represented presence (1) and values less 
than 0.5 indicated absence (0). Doing so, we could then quantify accuracy using confusion matrix 
methods commonly used in classification that can be succinctly summarized as % accuracy. As such, we 
sought the random forest configuration for each crop that generated the highest % accuracy (and thus 
minimized error). 

The results of our exhaustive refinement exercise determined the final model configuration that 
we subsequently used to project suitability. These specifications are summarized in Table 3. 

 

Table 3. Model specifications determined from our exhaustive refinement exercise. 



 

Model Number of 
trees 

Number of 
variables 

Overall 
Accuracy 
(%) 

Apples 150 15 99.2 

Corn 200 6 90.5 

Winter Wheat 200 4 91.8 

 

2.1.4. Spatial Prediction 

We next applied the refined models to gridded covariates of the corresponding year and RCP to 
spatially predict the suitable geographies of each given crop. The resulting maps represent the probability 
(values range from 0 to 1) of each crop’s P/A on a given date under the specified scenario.  

2.1.5. Validation 

The model evaluation reported in Table 3 supports the refinement decisions in section 2.1.3 and 
compares the model’s classification to observed patterns within the training years (2013-2017). For 
purposes of projection, an assessment of the models’ performance outside of the training window adds 
more information. To that end, we compared each model’s 2020 RCP 8.5 projection to the geographic 
patterns observed in the 2020 CDL as a way of validating the model’s ability to project future planted 
geographies based upon observed circa 2015 P/A. At approximately 50,000 random non-irrigated points 
distributed evenly across the 50 strata used for model training we compared the observed P/A of the given 
model’s focal crop to the projected probability of its P/A. To facilitate quantitative comparison of a binary 
observation (P/A) to a continuous projected probability (0-1), we again classified the projected 
probabilities of each model as either present (prob. ≥ 0.5) or absent (prob. < 0.5) and then factorially 
compared these classifications to contemporaneous 2020 P/A observations in contingency matrices (Table 
4).  

Table 4. Confusion matrices assessing the accuracy of our crop-specific projections for 2020. 

APPLES 

  Observed (Truth) 

  Absent Present 

Pr
ed

ic
tio

n Absent 23,441 7,010 

Present 159 4,499 



 

CORN 

  Observed (Truth) 

  Absent Present 

Pr
ed

ic
tio

n Absent 19,677 6462 

Present 4122 8639 

 

WINTER WHEAT 

  Observed (Truth) 

  Absent Present 

Pr
ed

ic
tio

n Absent 20,342 6,933 

Present 3,266 13,144 

 

 

Using these matrices, we then derived and assessed for each model the following statistics: 
overall accuracy (%), which represents the percent agreement between predictions and observations; 
Cohen’s kappa, which represents how predictions compare to what might be expected merely by chance 
(values range from -1 to 1 wherein 1 represents complete agreement, 0 represents no agreement, and 
negative values indicated agreement that is worse than chance); producer’s accuracies of both presence 
and absence (%), which represents the percent at which observed instances are correctly classified; and 
user’s accuracies of both presence and absence (%), which represents the consistency with which a 
predicted outcome matches that which was observed at that point. These statistics are summarized for all 
three models in Table 5. 

 

Table 5. Summary statistics assessing the accuracy of our 2020 crop-specific projections. 

 

 

 

 



 

 

Accuracy (%) Kappa 

Producer’s Accuracy (%) User’s Accuracy (%) 

Absence Presence Absence Presence 

Apples 79.58 0.4533*** 99.33 39.09 76.98 96.59 

Corn 72.79 0.4105*** 82.68 57.21 75.28 67.70 

Wheat 76.65 0.5235*** 86.17 65.47 74.58 80.10 

***all Kappa statistics were significantly greater than zero (p << 0.001) 

 

The results of our classification accuracy assessment indicate that the models’ projections, 
overall, are moderately accurate for use in near term forecasting and produced agreement far greater than 
would be expected by chance alone. While the overall accuracy of all three models was fairly comparable, 
the apple model was the most accurate having an overall accuracy of nearly 80%—which is often 
considered excellent in the context of remotely sensed land cover classification—and a kappa suggesting 
that patterns aren’t likely due to mere chance. Corn had the lowest classification accuracy (~73%) and 
though it’s kappa was significantly greater than 0; p < 0.001). The user’s and producer’s accuracies of all 
three models suggest that the models consistently map presence where crops are observed to be present, 
but they do not capture all presences. A user of these projections can more-or-less (depending on the 
model) reliably expect the focal crop to be present where the model predicts it to occur. By contrast, from 
the producer’s accuracy perspective, the models are less reliable at predicting and capturing all observed 
locations of each crop.  This is most pronounced for apples and likely reflects the small sample size of 
apple presence in both the training and test data. Nonetheless, both producer’s, users, and overall 
accuracy are remarkably high (generally > 70%) – they are comparable to the accuracy of remotely 
sensed land cover maps that classify based on direct observation of contemporary earth surface 
reflectance, whereas our projections are devoid of any such direct observations and are instead based 
purely upon statistical associations between P/A and climatic, biophysical, and physiographic properties. 
Interestingly, the apple and corn models tend to predict presence where absences are observed more than 
wheat suggesting that the planted area of these two crops may not exhaust their suitable ranges. 

2.1.6. Variable Importance 

To cursorily assess the factors most prominently driving our projections, we quantified variable 
importance using two different metrics: (i) mean decrease in impurity and (ii) mean decrease in accuracy. 
Both metrics generally describe the degree to which the accuracy of the model’s prediction decreases 
when the variable in question is removed from consideration—a large decrease in prediction accuracy or 
purity suggests that the withheld variable is more important than a variable whose removal less effected 
prediction accuracy or purity. While both metrics seek to quantify the same effect, they do so in slightly 
different ways and can thus yield different results. It is thus most informative to consider the results of 
both approaches when assessing variable importance. Important results are also sensitive to the data used 



 

to train the model. To assess this sensitivity, we used 10-fold cross validation to quantify the mean and 
standard deviation of each variable’s importance score for each of the three crop-specific models.  

For all three models there was generally good agreement in the ranking of variables by both 
importance metrics. A pattern merged in which a single terrain variable (elevation for apples and slope for 
corn and wheat) was either the most or one of the most important variables according to importance 
metrics (Figure 2.). We surmise that this reflects a prominent decision within each of the models that 
partitions high mountains (having both high slope and elevation) in which cropland is largely absent from 
the flatter landscapes in which most agriculture inhabits. Variables related to summer moisture (monthly 
precipitation, monthly aridity, and soil available water content) also proved to be particularly important 
by both metrics and for all three crops suggesting that crop geographies are largely constrained by 
moisture dynamics. As such our projections primarily reflect an expected response to changing moisture 
regimes. 

 



 

 

Figure 2. Variable importance plots for the apple, corn, and winter wheat random forest models. Both 
“mean decrease in impurity” and “mean decrease in accuracy” are reported for each model as two distinct 



 

methods of quantifying importance. For both metrics and all three models, variable importance was 
assessed using 10-fold cross validation such that the mean importance score is shown as the center point 
and the standard deviation of the 10 score estimates is shown as the whiskers. 

2.1.7. Derivative Predictions 

To more succinctly illustrate and summarize the shifting geographies of our focal crops, we 
defined the most suitable areas as those having a suitability value greater than a derived, crop-specific 
threshold value. These thresholds were derived by first generating suitability projection for 2015 using the 
specified model and then masking this projection to areas in which the given crop was observed to be 
present circa 2015 (as described in section 2.1.1) to estimate the statistical distribution of suitability 
within planted pixels. The threshold was determined as the median value of these pixels and “most 
suitable” areas were mapped as those having a suitability value that exceeded this threshold. As such, 
these areas don’t identify areas that ‘significantly’ contribute to a crops total production, but rather are a 
heuristic representing the geographies of relatively high suitability. The “most suitable” layers delivered 
to AFT were further masked to areas identified by AFT as being either cropland, pastureland, or 
rangeland in their 2016 FUT map. 

In addition, we also assessed the projected change in suitability for all three crops between 2020 
and 2040 and 2020 and 2060 by differencing the respective maps. 

 

2.2. Broad Land Use Class Suitability Modeling 

The methods used to project the geographies of four broadly defined land use classes (i.e., 
cropland, pastureland, rangeland, other) were similar to those described above for projecting crop-specific 
geographies. In particular, the means of data selection, covariate treatment, model specification, model 
evaluation, and model execution were essentially the same aside from the distinctions noted in the 
subsequent text.  

2.2.1. Training data selection 

Rather than focusing exclusively on one of three focal crops, our methodology for broad land use 
classes instead aimed to predict the probabilities of all four land use classes simultaneously using a single 
model trained using one comprehensive dataset such that the probabilities of all four classes are directly 
comparable and sum to 1. This approach enables us to determine the most probable land use in each pixel 
at a given point in time as that having the highest predicted probability.  

Since this application seeks to project the probable geographies of broad land use classes (not just 
their biophysical suitability) with an understanding that these classes compete for the same finite space, 
many of the P/A issues described above—particularly those related to presence as proxy of suitability and 
the interpretation of absence—are less applicable in this context. Instead, we accept that a number of un-
resolved factors (genetics, economics, tradition, etc.) likely dictate their arrangement on the landscape as 
we see it today and the model results assume that similar socioeconomic factors would operate in the 
future. As such, we caution that sharp changes in markets or biotic stresses (like diseases) would cause 



 

deviations that are not accounted for in this random forest model. By taking a broad sample of each 
class’s presence throughout the conterminous US we are implicitly “baking in” many unresolved 
mechanisms in our training data set such that our predictions will represent the probable geographies due 
to climate change, all else being equal. 

To that end, we collected training data representing a class’s observed presence for each of the 
broad land use classes as determined by the FUT 2016 landcover map with minor modifications. Upon 
inspection of the 2016 FUT map, we noticed that roads throughout much of the US were misclassified as 
either pasture or rangeland. To prevent this issue from confounding our projections, we used the 2016 
NLCD impervious surface layer to identify roads, buffered them by two pixels to ensure full removal and 
then masked these areas out from further consideration. We also excluded irrigated cropland and pasture 
as described above using the irrigation maps of Xie et al. 2021. 

The same stratified sampling scheme used for the crop-specific models—including the same 50 
covariate-based strata—was used to ensure a comprehensive sample. However, rather than further 
partitioning these 50 strata into two subsets representing areas of a given crop’s observed P/A, strata were 
instead partitioned into four substrata based on the observed presence of each of the four focal land use 
classes for a total of 200 strata. Thereafter, 100 samples were then taken from each stratum. The final 
training set included 19,885 points including 5,000 from croplands, pasturelands, and other classes and 
4885 from rangeland areas. Note, too, that only ‘presence’ locations were collected since absence of one 
land use can be inferred from the concurrent presence of another (this is discussed further in section 
2.2.3). 

2.2.2. Gridded Covariates 

The same covariates were used in the same manner as described for the crop-specific analyses 
(Table 2). 

2.2.3. Model Specification and Refinement 

Rather than predicting the probability of a given land use class’s occurrence using crop-specific 
models that disregard the influence of other land uses, as was done for the crop-specific modeling, here 
we instead predicted the probabilities of all four land use classes using a single model such that their 
probabilities would be in direct competition and sum to one. To do so, we used the same training data to 
specify four separate (but intimately related due to their dependence on the same training dataset) sub-
models. When running each of the four sub-models, the sub-model’s focal class was assigned a value of 
one (i.e., “present”) in the training data set and the remaining three classes were set to zero (i.e., absent).  

For the purposes of model refinement, we assessed the overall model’s classification accuracy—
that is, its ability to assign the highest probability to the observed class—in search of the configuration 
that maximized prediction accuracy (and thus minimized error). Again, the dynamic variables in this 
exercise were the number of trees generated by the model and the minimum number of variables 
considered at each branching node within those trees. As with the crop specific models, we split the 
training data 80/20 in this exercise such that 80% of the training points were used to train the model and 



 

the withheld 20% were used to assess the accuracy of its predictions. Our assessment found that the 
optimal configuration involved 300 trees in which 7 variables were considered at each split. 

2.2.4. Spatial prediction 

Rather than one output layer, our broad land use class methodology produced four layers (each 
representing the probability of one of the four classes) for each year and RCP on a scale of zero to one. 
The final layers delivered to AFT were further masked to areas identified by AFT as being either 
cropland, pastureland, or rangeland in their 2016 FUT map. 

2.2.5. Validation 

Because our land use model was trained using the FUT 2016 land cover map which was 
singularly produced using an expansive combination of land use/cover datasets, there exists no 
comparable product representing a later date that could be used to independently validate our model’s 
forecasting performance. As such, we instead compared the classification accuracy of our model back 
against that of the 2016 layer at roughly 200,000 random non-irrigated points distributed evenly amongst 
the 50 strata described above in section 2.1.1. We constructed a confusion matrix (Table 6) using these 
points from which we derived the same accuracy statistics as described above in section 2.1.5 (Table 7). 

Table 6. Confusion matrix comparing the predictions of our broad land use model to the classes 
observed according to the 2016 land cover map of the previous FUT report. 

  Observed 

  Cropland Pasture Rangeland Other 

Pr
ed

ic
te

d 

Cropland 18,752 7,978 2,072 4,699 

Pasture 10,393 25,693 6,163 8,131 

Rangeland 5,875 7,180 34,461 15,382 

Other 3,860 7,514 5,871 21,546 

  

Table 7. Summary statistics derived from Table 6 describing the accuracy of our broad land use 
classification. 

Overall 
Accuracy (%)  

Kappa  Producer’s Accuracy (%)  User’s Accuracy (%)  

Crop  Pasture  Range  Other  Crop  Pasture  Range  Other  

54.13  0.3857***  48.23  53.12  70.96  43.30  55.97  51.00  54.79  55.54  

***The Kappa statistics is significantly greater than zero (p << 0.001) 



 

The model’s overall classification accuracy is moderate at 54% and the kappa statistic confidently 
suggests that its predictions are distinct from those one might expect to result from chance alone. 
Producer’s and user’s accuracies were highest for the grassland classes (pasture and rangeland) and 
lowest for cropland and ‘other’. Interestingly there was relatively low confusion between the two 
grassland classes. Instead, cropland was often confused with pasture more than any other class and may 
reflect similarity and thus underlying confusion in the training data sources between crops like alfalfa, 
hay, and even small grains and pasture grasses. Likewise, the catch-all ‘other’ class was confused with 
rangeland more than any other class and may reflect the breadth of both classes—our training data for 
rangeland (the 2016 FUT land cover map) classifies much of the American west as rangeland therein 
lumping numerous herbaceous and barren ecosystems together while ‘other’ is the broadest thematic class 
of the four and likely includes lands with similar characteristics to many of those encompassed by 
rangeland.  

2.2.6 Variable Importance 

The same variable importance assessment described above for the crop specific models (see 
section 2.1.6) were applied to the broad land use model as well (Figure 3).  

 

 



 

Figure 3. Variable importance plots for the broad land use random forest model. Both “mean decrease in 
impurity” and “mean decrease in accuracy” are reported for each model as two distinct methods of 
quantifying importance. For both metrics and all three models, variable importance was assessed using 
10-fold cross validation such that the mean importance score is shown as the center point and the standard 
deviation of the 10 score estimates is shown as the whiskers. 

 

Unlike the crop-specific models, however, we found less agreement between the two importance 
metrics. While slope was the dominant variable identified by both metrics, there was substantial 
disagreement in the metrics’ rankings of the subsequent variables. Mean decrease in impurity identified 
soil properties as the next most dominant variables whereas mean decrease in accuracy primarily 
highlighted evapotranspiration and, to a lesser degree, temperature. Notably, the scores for most variables 
were indistinguishable from one another when considering their variance. As such its less clear which 
factors are driving our broad land use predictions which is to some degree unsurprising considering the 
complexity of modeling four heavily aggregated land use types simultaneously and that are effectively 
competing against one another. 

2.2.7 Derivative layers 

Many additional layers were derived from the broad land use projections, including the most 
probable land use class for each year/scenario combination. These were derived pixel-wise as simply the 
class which had the highest predicted suitability.  

In addition, we also assessed the projected change in suitability for all four landcover types 
between 2020 and 2040 and 2020 and 2060 by differencing the respective maps. 

All of these derivative layers were also masked to areas identified by AFT as being either 
cropland, pastureland, or rangeland in their 2016 FUT map. 

 

2.3. Sea-Level Rise Modeling 

We mapped projected sea level rise in 2020, 2040, and 2060 under RCP 2.6 and 8.5 following 
NOAA methods (NOAA, 2017). In brief, we first used VDatum to map the mean higher high-water level 
(MHHW) which represents the average height of the highest tide recorded each day during the recording 
period. This was done for all CONUS coastal regions. We then identified the projected global mean sea 
level rise (m) expected by 2020, 2040, and 2060 under each scenario as reported in the IPCC’s AR5 
(Table 8) and added these values as constants to the MHHW raster giving us projected estimates of 
MHHW in each year under each RCP. Finally, we mapped these projections to a DEM wherein an 
elevation of zero represented mean sea level at present—all regions of the DEM having elevations less 
than our projections were assumed to have been inundated (at least once, however briefly). This method 
identified two non-coastal areas as inundated despite no inundated fluvial connection to the ocean: near 
Death Valley, CA, and surrounding the Salton Sea in southern California. These are areas that lie below 



 

sea-level but are not currently inundated—we thus assumed predicted flooding of these areas to be an 
artefact of the approach and removed these regions by masking out the counties containing them. 

 

Table 8. Global mean sea level rise (m) projected by the IPCC’s AR5 in 2020, 2040, and 2060 
under RCPs 2.6 and 8.5. 

Year RCP 2.6 RCP 8.5 

2020 0.08 0.08 

2040 0.17 0.19 

2060 0.26 0.33 
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