Outcomes Estimation Tools Training Webinar Series

Michelle Perez, PhD Water Initiative Director Aysha Tapp Ross Water & Soil Health Scientist

Jen Tillman Research Scientist Featuring: Prioritize Target Measure Application (PTMApp) November 1, 2023 Noon to 1:30 pm eastern

American Farmland Trust

Agenda

- Welcome, Poll (5 min)
- PTMApp Presentation (35 min)
- PTMApp Demonstration (30 min)
- Q&A (20 min)

Zoom Webinar Reminders

- Use Q&A Box last 20 minutes (Vote up!)
- Use Zoom Direct Message feature to Jen if having technical difficulties
- Email with resources to follow each webinar
- Recordings posted on the webinar series site the following Monday
- Evaluation survey in the Chat Box
 - Complete to be entered to win a \$25 gift card!!

Time for 3 polls!

Tools in 2023 Trainings*

May 3: Webinar Launch & PCOC (recording)

June 7: Model My Watershed (recording)

July 12: Nutrient Tracking Tool (NTT) (recording)

<u>August 2: NRCS Cover Crop Economics Tool</u> (economic) (recording)

September 6: FieldPrint Platform (recording)

October 4: EPA PLET (water quality) (recording)

November 1: PTMApp Web Tool (water quality)

December 6: AFT Retrospective-Soil Health Economics (R-SHEC) Tool (economic)

Tools in 2024 Trainings*

January 10: SIPES Method/SIDMA Tool (social)

February 7: Fast-GHG (climate)

March 6: Cool Farm Tool (climate)

April 3: TBD

May 1: COMET-Farm & COMET-Planner (climate)

June 5: CAST Tool (water quality)

July 3: TBD

*Subject to change

Prioritize Target Measure Application (PTMApp)

Drew Kessler | Houston Engineering Inc.

Udai Singh | Minnesota Board of Water and Soil Resources

Speaker Intro

Education

PhD in Water Resources Science, University of Minnesota MS in Geospatial Information, University of Nebraska-Lincoln BS in Natural Resource Management, North Dakota State University

Professional Experience

HEI: 2014-Present Total Experience: 18 Years

Away from work

- Spouse, 4 kids, two dogs, and a cat
- Enjoy spending time at the cabin, sporting events, and fishing

Other Areas of Work

- Climate-Smart Farmer-Led Projects
- GHG modeling
- Large wetland and river restorations
- Regional and national water quality studies

BOARD OF WATER AND SOIL RESOURCES

https://ptmapp.bwsr.state.mn.us/

https://bwsr.state.mn.us/ptmapp-learning-center

Udai Singh

Email: udai.singh@state.mn.us MN Board of Water and Soil Resources (BWSR) Modeling and Outcomes Coordinator Introduction

Engineering, Science, and Technology firm

250 employees

Upper-Midwest offices with a national reach

Presentation Focus

- Tool history, use, and methods
- Use by local practitioners
- Show example applications
- Respond to attendee survey responses!!!!
- Brief overview of steps to adapt to new geographies

Snapshot

Snap Shot of Features	Prioritize, Target, and Measure Application (PTMApp)
Scale & level of specificity	Field level to HUC 8 watershed level
Outcomes	Water quality, loss reductions: sediment losses (tons & ton/ac), total nitrogen (lbs & lb/ac) losses, total phosphorus losses (lbs & lb/ac)
Conservation practices	Currently: 21 different practices based upon NRCSA design standards Nutrient Management Plan, Prescribed grazing, Forage/Biomass Plannting, Reduced Till, Cover Crops, No Till Perennial Crops, lake and Wetland Shoreline Restoration, Grassed waterway, Grade Stabilization, Critical Area Planting, Multi-Stage Ditch, Infiltration Trench, Denitrifying Bioreactor, Riparian Buffer, Filtration Strip, Wetland Restoration, Water and Sediment Control Basin, Drainage Water Management, Farm Pond

Snapshot

Snap Shot of Features	Prioritize, Target, and Measure Application (PTMApp)
Land uses & production systems	All land uses (cropland, grazing, pasture, forest) Production systems: Focused primarily on row crop and pasture lands. Currently being adapted to Agroforestry.
States & territories	Available everywhere, but needs work for adaptation Currently deployed in MN, ND, IA, WI, MB and O'ahu
How much time, data, & skills needed to generate an outcome estimate	 Inputs need moderate GIS expertise and time Running the tool, novice level GIS expertise Using the outputs, moderate level of GIS expertise and Water Quality understanding
Special note	Meant to make water quality modeling more broadly available through GIS

Purpose: Strengths and Limitations

Strengths

- Publicly available and supported
- User defined results at multiple scales
- Supports planning and implementation
- Demonstrated to support portions of federal 9-step plans

Limitations

- Largely an empirical tool
- Doesn't speciate nutrients
- Moderate level GIS expertise needed to prep input
- Still needs adaptation guidance in many US regions

What led to PTMApp development?

- Shifting expectations of "what's good enough"
 - Environmental outcomes vs. widgets:

Sediment	Phosphorus	Storage	Land Management or Protection
	P ¹⁵ Phosphorous	8	
9,322 tons/year reduction (at catchment)	1,562 lbs/year reduction (at catchment)	16,000 acre-feet	17,075 acres
 Focused around rivers: White Earth River Marsh Creek Middle Wild Rice River Upper South Branch Wild Rice River 	 Focused around rivers: White Earth River Marsh Creek Middle Wild Rice River Upper South Branch Wild Rice River 	 Focused around the transition zone (Dark Green, Fig. 1-8): Wild Rice River above Mahnomen Wild Rice River above Twin Valley 	Focused around the transition zone (Dark Green, Fig. 1-8): • Soil Health • Grassland • Forest • Wetland • Habitat

Innovative Technology Solution Sought

Needed to be scalable to meet project needs

Catchment (~40 ac) Sediment load = 5.5 tons/yr TP load = 2.8 lbs/yr

Lakeshed (~3,600 ac) Sediment load = 0.02 tons TP Load = 0.37 lbs Majority of load deposited in lake: 373 tons of sediment 270 lbs of TP

HUC 12 (~17,000 ac) Sediment load = 568 tons TP load = 2,189

Some load may be contained locally and not make it downstream

HUC 10 (~132,000 ac) Sediment load = 2,597 tons Sediment reduction goal (20%) = 519 tons

TP load = 4,475 lbs TP reduction goal (20%) = 895 lbs

HUC 8 (~1.1 mi ac) Sediment load = 52,201 tons TP load = 34,245 lbs

Target catchments with high sediment delivery

History of development?

- ArcGIS-based toolbar add-in
- Option for Web App
- Free to public
- Vetted by peers

Solution: PTMApp

Desktop

			Toolbox			
Ingest Data v	BMP Suitability ~	1			?	8
Catchments and Loading ~ Ranking ~	Benefits Analysis ~ Cost Analysis	Settings	Extract for Web	Log Files	Help	About
Modules			Admir	nistratio	on	

PTMApp Desktop

ArcGIS Version 10.7

Resource) Tool

13, 2021) ArcGIS Pro 2.8 ArcGIS Version 10.8

Download PTMApp - Desktop ArcGIS Toolbar Version 3.1.0289 (Updated October

Download SPRUCE(Summarize by Priority

https://ptmapp.bwsr.state.mn.us/User/PTMAppDesktop

	Dataset	PTMApp Name	Description	Format
1	Plan Boundary			
		bound_1w1p	Project boundary; naming convention for boundary of 1W1P planning area	polygon
2	SSURGO			
		ssurgo_cpi	SSURGO - Crop productivity index	raster
		ssurgo_hs	SSURGO - Hydraulic rating	raster
		ssurgo_hsg	SSURGO – Hydrologic group	raster
		ssurgo_dtgw	SSURGO - Depth to groundwater	raster
3	Curve Number			
		curve_num	Curve number raster	raster
4	Elevation Produ	icts		
		raw_dem	Non-conditioned digital elevation model	raster
		fdr_total	Flow direction raster from fill all	raster
		fac_total	Flow accumulation from fill all	raster
		hyd_dem	Hydrologically-conditioned digital elevation model	raster
		us_tt	Upstream travel time in hours	raster
		ds_tt	Downstream travel time in hours	raster
5	RUSLE Inputs			
		rusle_kw	RUSLE - Soil erodibility factor	raster
		rusle_r	RUSLE - Rainfall-runoff erosivity factor	raster
		rusle_c	RUSLE - Cover management factor	raster
		rusle_p	RUSLE - Support practice factor	raster
		rusle_m	RUSLE - m-weight factor	raster
6	Travel Time			
		tt_grid	Cell to cell travel time in seconds	raster
7	Priority Location	าร		
		p_res_pts	Point locations of priority resources and/or plan regions, with water quality goals in attributes	point

Tool Overview

 Input generation most significant (human-time) part of running the tool

- Requires:
 - Locating data
 - Difficult for large watersheds with many stakeholders
 - Formatting for use in tool

Tool Overview

Delivery Potential (D)

Peak Discharge, ft./sec.. High Low

Treatment Potential (T)

Design Standard Velocity

0.05 ft./sec.

Reduction Ratio (R = T/D)

Tool Overview

PTMApp use in planning and implementation

Set Priority Areas: Source assessments

Source assessments completed for:

- Sediment
- Phosphorous
- Nitrogen

Track progress towards goals

Develop Implementation Scenarios: Priority Locations

Treatment Group Type	Structural vs. Non- Structural	Number in Mille Lacs Lake Drainage Area
Storage	Structural	2461
Filtration	Structural	308
Protection	Structural	135
Source Reduction	Non-Structural	503

Prioritize Fields: WQ and Hydrology in Dubuque County

Benefits of the Top 100 Multi-benefit Conservation Practices

Implementation of the top 100 multi-benefit conservation practices in the Headwaters of the North Fork Maquoketa Watershed will accrue sediment, total nitrogen, total phosphorus, and percent flow reduction benefits and make progress toward stated County resource goals, as summarized in the table below.

	Total Nitrogen		Total P	Phosphorus Sec		liment Pe		eak Discharge	
	Mass (lbs./yr.)	Percentage (%)	Mass (lbs./yr.)	Percentage (%)	Mass (tons/yr.)	Percentage (%)	Rate (cfs)	Percentage (%)	
Existing Load	410,302		38,959	18	140,587		2,406	45	
Goal	168,224	41	6,233	10			361	10	
Total Progress of Top 100 Practices	58,281	14	5,451	14	49,430	NA	1,322	55	

* No INRS goal for sedment. Percentage reduction shown is from existing conditions

New Innovations: Hydrology

		Peak Flow, <u>cfs</u>			Volume, ac-ft	
	Existing	With Storage	% Reduction	Existing	With Storage	% Reduction
2 yr	172	126	27%	611	611	0%
10 <u>yr</u>	360	76	21%	1,281	1,281	0%
100 yr	800	681	15%	2,849	2,849	0%

Evaluate Practices

Buffer		
Practice Type	Water ID	Sediment Reduction, tons/year
Vegetative Buffer*	13074	2.24
Vegetative Buffer*	28295	4.13

* Benefits provided by the buffer without other conservation practices in place

applicable

Legend	
DNR Buffer W	ater
Water ID	
13074	
28925	
buffer	
catchm ent	
storage	
filtration	
205 410	820

Proposed Alt	roposed Alternative Practices	
Practice Type	HEI ID	Sediment Reduction tons/year
storage	13074	15.0

egend	
ONR Buffer W	/ater
Nater ID	
13074	
28925	
buffer	
filter strip	
catchm ent	

Jack Inspect 10-145

Table Bank

Existing Alter	native Prac	tices
Practice Type	Water ID	Sediment Reduction, tons/year
filtration	13074	37.51
filtration	28925	10.72
storage	13074	16.56

Comparable Check Parcel PIN - 190350040

Survey Questions: Producer Friendly & Outside of MN

Photo Credit not available

→ 5 sq. mi.

Riparian Buffer
 Filtration Strip
 Critical Area Planting
 Prescibed Grazing
 Conservation Cover
 0
 0.1
 0.2
 Miles

Survey Questions: 9-element watershed-based plans

WHISKEY CREEK WATERSHED SECTION 319 NINE ELEMENT PLAN

Figure 17: Erosion Vulnerability

Figure 20: Sediment Reduction Practices

New Geographies: Known Geographies

- Minnesota (core development location)
- North Dakota (widespread use in eastern ND)
- Wisconsin
- Manitoba
- O'ahu

New Geographies: Primary Steps

1. Identify input conversions (process already developed)

2. Test and validate results

Recon	Rever
Tech	nnical Memorandum
To:	Tracy Halstensgard Roseau River Watershed District
	Jason Vanrobaeys Agriculture and Agri-Food Canada
From:	Kris Guentzel; Drew Kessler, PhD Houston Engineering, Inc.
Through:	Chuck Fritz The International Water Institute
Subject:	PTMApp-Desktop Data Requirements
Date:	February 23, 2017
Project:	Roseau Lake PTMApp (HEI ID 5489-006)
BACKG	ROUND AND PURPOSE
A multi-na (RRWD), . Conserval have agre managem (RRW) by PTMApp-I (BWSR) g Through if developed	tional, public-private stakeholder group including The Roseau River Watershed District Agriculture and Agri-Food Camada (AAFC), the Province of Mantoba, the Seine Rat River ion District, the International Water Institute (WI), and Houston Engineering, Inc. (FIE), ed to work together to develop a targeted implementation plan that identifies best ent and conservation pradicts for improving water quality in the Roseau River Watershed utilizing the Prioritize, Target, and Measure Application for desktop (PTMApp-Desktop). Desktop was developed with a State of Minnesota Board of Water and Soli Resources rand by partness including the Red Rever Watershed Management Board, IW and HEL s development and implementation, PTMApp-Desktop has utilized geospatial inputs in the Inited States. The number of this technical memorandim is to rooma inize the

input data requirements needed to run PTMApp-Desktop, so that Canadian collaborators can adjust

Canadian geospatial data to work in PTMApp-Desktop.

engineering. In Te: Dave Elliot <u>Gatu</u> Resource Conservation & Development Council From: Drew Kessler, PhD and Scott Kronholm, PhD Houston Engineering, Inc. Subject: Science-Based Adjustments Needed for PTMApp Qabu, (V1 Technical Memorandum)

DRAFT (03/15/2023)

Date: TBD

HOUSTON

Project: R011125-0001 (HEI) and USDA NRCS cooperative agreement NR2292510002C002

INTRODUCTION AND PURPOSE

Egapting Resource Conservation & Development Council (ORCO) and Houston Engineering. Inc. (HE) are working colliboratively to [pelophe Prioritize. Target, and Measure Application (PTMAp) toolar to Gaptu. This effort is part of a larger collaborative led by ORCD to enhance stewardship on Hawai's working lands. The purpose of this technical memorandum is to define the science-based diplasments that will be needed to adapt the PTMApp Deal ORS to toolar to the stand of Qaptu in addition to adjustments that are needed for input datasets, there are several processing decisions that PTMApp-Delotip users can make while conducting an analysis. Recommendations on processing decisions that PTMApp Deal training materials developed during a later stage of this project. The overarching vision is that this effort will pave the jevy to upscaling PTMApp to all of the Hawaian lialanci for use on working lands.

Briefly, the current technology requirements for PTMApp-Desktop are listed below. These requirements may change as the State of Minnesota continues to operate and maintain PTMApp-Desktop.

- Operating System: Windows 8 or 10
 Microsoft Framework: .NET Framework 4.8
- Microsoft Framework: .NET Framework
 ArcGIS License:
 - ArcMap 10.7, 10.8, or ArcPro 2.8
 - Basic License with Spatial Analyst Extension
- Advanced License required to run Extract-for-Web tool
- PTMApp-Desktop Toolbar Version: 3.1.0289 or later

INPUT DATA

	Dataset	PTMApp Name	Description	Format
1	Plan Boundary			
		bound_1w1p	Project boundary; naming convention for boundary of 1W1P planning area	polygon
2	SSURGO			
		ssurgo_cpi	SSURGO - Crop productivity index	raster
		ssurgo_hs	SSURGO - Hydraulic rating	raster
		ssurgo_hsg	SSURGO – Hydrologic group	raster
		ssurgo_dtgw	SSURGO - Depth to groundwater	raster
3	Curve Number			
		curve_num	Curve number raster	raster
4	Elevation Produ	icts		
		raw_dem	Non-conditioned digital elevation model	raster
		fdr_total	Flow direction raster from fill all	raster
		fac_total	Flow accumulation from fill all	raster
		hyd_dem	Hydrologically-conditioned digital elevation model	raster
		us_tt	Upstream travel time in hours	raster
		ds_tt	Downstream travel time in hours	raster
5	RUSLE Inputs			
		rusle_kw	RUSLE - Soil erodibility factor	raster
		rusle_r	RUSLE - Rainfall-runoff erosivity factor	raster
		rusle_c	RUSLE - Cover management factor	raster
		rusle_p	RUSLE - Support practice factor	raster
		rusle_m	RUSLE - m-weight factor	raster
6	Travel Time			
		tt_grid	Cell to cell travel time in seconds	raster
7	Priority Location	IS		
		p_res_pts	Point locations of priority resources and/or plan regions, with water quality goals in attributes	point

DEMO – Ingest Data Module

Key Steps

- Clips all data files to the study watershed/geography
- Calculates downstream flow length
- Calculates upstream flow
 length

DEMO – Catchments and Loading Module

Key Steps

- Generates Catchments
- Calculates Up/Down travel times
- Sediment/TP/TN loading calculations
- Lake Routing (optional)
- Scale loads (optional)
- SPI

DEMO – Catchments and Loading Module

DEMO – Catchments and Loading Module

DEMO – Ranking Module

This tool assigns a percentile ranking to each value in the SPI raster based on an assumed distribution.

Ingest Data *	BMP Suitability *	ച 🙈 🖶 📿 🔒
Catchments and Loa	ading * Benefits Analysis *	Settings Extract Log Help About
Ranking •	Cost Analysis	for Web Files
SPI Rank 🚽		Administration
Leaving the La	ndscape	
Delivered to th	e Catchment Outlet	
Priority Resour	ce Delivery	
Custom Weigh	iting	

Key Steps

- Develops normalized ranks (i.e., percentages) of loading information and SPI
- Option for user's to input a custom weighting to ranks

DEMO – Ranking Module

Input:

This tool assigns a percentile ranking to each value in the SPI raster based on an assumed distribution.

DEMO – Ranking Module

Ingest Data * BMP Suitability * Catchments and Loading * Benefits Analysis * Ranking • Cost Analysis SPI Rank Leaving the Landscape Delivered to the Catchment Outlet Priority Resource Delivery Custom Weighting

a Innut-

This tool assigns a percentile ranking to each value in the SPI raster based on an assumed distribution.

DEMO – BMP Suitability Module

Geoprocessing		→ □ ×
€ BMP -	Suitability	9
Parameters Environments		?
 ✓ Water and sediment control basin: ✓ Drainage water management: ✓ Farm pond/wetland: Minimum fill depth of depression (in meters) 	:	0.1524
Minimum surface area of depression (in acres Regional wetland/pond: Large wetland restoration: Filtration strip: Riparian buffer: Denitrifying bioreactor: Saturated buffer: Multi-stage ditch (open channel): Infiltration trench/small infiltration basin: Grade stabilization: Critical area planting: Lake and wetland shoreline restoration:	;):	1
 Grassed waterway: Grassed waterway: Cover crops: Perennial crops: Nutrient management of groundwater: Reduced-till: No-till: No-till: Nutrient management - phosphorus: Nutrient management - nitrogen: Prescribed grazing: Forage / Biomass Planting: 		
		Run 🕟 🔻

Key Steps

- Identifies possible areas for BMPs
- Allows users to exclude areas for BMPs
- Add WQ benefits to ACPF data

DEMO – BMP Suitability Module

DEMO – Benefits Analysis Module

Ingest Data *	BMP Suitability *	🙈 届 🕗 🔒
Catchments and Loading *	Benefits Analysis *	
Ranking *	Reduction Ratio	b Files
Modules	Screen BMP	ministration
🔣 Map 🗙	Reduction Efficiency	r
	Estimate Load Reduc	ctions
	Scale Load Reductio	ns
	Treatment Trains	
	Generate Benefits Ta	bles
	Attach to Catchmen	ts

DEMO – Cost Analysis Module

Ingest Data *	BMP Suitability *			Ð	0	A
Catchments and Loading *	Benefits Analysis *	Cattings	Extract		Hala	About
Ranking •	Cost Analysis	settings	for Web	Files	пер	ADOUL
Module	s		Admir	nistrati	n	

Geoprocessing	+ □ ×
€ Cost - Opt	imal Scenarios
Parameters Environments	(?)
× RMP Unit Cost	
Water and Sediment Control Basin cost (\$/	
each):	4500
Drainage Water Management cost (\$/acre):	5.54
Farm Pond/Wetland cost (\$/acre):	812.05
Regional Wetland/Pond cost (\$/acre):	20439.57
Large Wetland Restoration cost (\$/acre):	20439.57
Filtration Strip cost (\$/acre):	496.08
Riparian cost (\$/acre):	1065.87
Denitrifying Bioreactor cost (\$/cu yd):	38.02
Saturated Buffer cost (\$/acre):	1367.78
Multi-stage Ditch (open channel) cost (\$/acre	4036.56
Infiltration Trench/Small Infiltration Basin cost (\$/sq yd):	36.45
Grade Stabilization cost (\$/sq yd):	53.1
Critical Area Planting cost (\$/acre):	293.77
Lake and Wetland Shoreline Restoration cost (sq yd):	\$/ 37.98
Grassed Waterway cost (\$/acre):	1062.86
Cover Crops cost (\$/acre):	33.52
Perennial Crops cost (\$/acre):	480.8
Nutrient Management of Groundwater cost (\$ acre):	6.84
Reduced-till cost (\$/acre):	11.03
No-till cost (\$/acre):	11.03
Nutrient management - phosphorus cost (\$/ acre):	6.84
Nutrient management - nitrogen cost (\$/acre	: 6.84
Prescribed grazing cost (\$/acre):	6.34
Forage / biomass planting cost (\$/acre):	44.84
> Minimum BMP Cost	
	Run 🔿 📼
	Run 🕞 🔻

Key Steps

- Cost estimate approximated at EQIP costshare rate
- Life cycle cost estimate

DEMO – Cost Analysis Module

Questions

Next steps in our outcomes estimation journey

- Join December 6th for the AFT Retrospective Soil Health Calculator (R-SHEC) Tool webinar
- □ Fill out the 8-question (2-min) online evaluation survey
- □ Schedule a free "coaching" session with us

	Order	а	free	print	сору	of	the	OET	Guide
--	-------	---	------	-------	------	----	-----	-----	-------

□ Keyword: "AFT outcomes tools"

ſ	-	പ
	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
		_

Please keep in touch: outcomestools@farmland.org

