Outcomes Estimation Tools Training Webinar Series

Featuring: Fertilizer And Soil Tool designed to help quantify Greenhouse Gas emissions (FAST-GHG)

> February 7, 2024 Noon to 1:30 pm eastern

Michelle Perez, PhD Water Initiative Director

Aysha Tapp Ross Water & Soil Health Scientist

American Farmland Trust

/lichel

Agenda

- Welcome, Poll (7 min)
- FAST-GHG Presentation (35 min)
- Q&A (10 minutes)
- FAST-GHG Demonstration (20 min)
- Conclusion slides (5 min)
- Q&A (13 min)

Zoom Webinar Reminders

- Use Q&A Box last 20 minutes (Vote up!)
- Use Zoom Direct Message feature to Aysha if having technical difficulties
- Email with resources to follow each webinar
- Recordings posted on the webinar series site the following Monday
- Evaluation survey in the Chat Box
 - Complete to be entered to win a \$25 gift card!!

Time for 3 polls!

Michelle

Tools in 2023 Trainings*

May 3: Webinar Launch & PCOC (recording)

June 7: Model My Watershed (recording)

July 12: Nutrient Tracking Tool (NTT) (recording)

<u>August 2: NRCS Cover Crop Economics Tool</u> (economic) (recording)

<u>September 6: FieldPrint Platform</u> (recording)

October 4: EPA PLET (water quality) (recording)

<u>November 1: PTMApp Web Tool (water</u> <u>quality)</u> (recording)

December 6: AFT Retrospective-Soil Health Economic Calculator (R-SHEC) Tool (recording)

Tools in 2024 Trainings*

January 10: SIPES Method/SIDMA Tool (recording)

February 7: Fast-GHG (climate)

March 6: Cool Farm Tool (climate)

April 3: **NEW!!** Critical Source Area Identification and Management

May 1: COMET-Farm & COMET-Planner (climate)

June 5: CAST Tool (water quality)

July 3: TBD

*Subject to change

Michelle

Using the FAST-GHG tool to estimate greenhouse gas benefits of soil health management practices

Peter Woodbury

Cornell University, Soil and Crop Sciences Section

Outcomes Estimation Tools Training Webinar Series American Farmland Trust

7 February, 2024

Hi, my name is Peter Woodbury, PhD, nice to meet you!

Job title & Location: What I do: Senior Research Associate, Cornell University, Ithaca, NY Research how to make agriculture and forestry more sustainable, growing more food, feed, fuel, and fiber while improving air, soil, and water quality, and reducing greenhouse gas emissions

Some other

Research topics:

Natural Climate Solutions, including tree planting, improved crop nitrogen management, improved manure management, and many others

Something I do for fun: Play Brazilian Samba music (drums, guitar, singing)

FAST-GHG Tool -- Topics for Today

- 1. Explain the purpose and scope of the free, online FAST-GHG tool
- 2. Discuss how the tool can be used to estimate GHG benefits from improved fertilizer management, cover crops, and reduced tillage for corn, wheat, and soybean in the conterminous US
- 3. Explain how the tool was developed to be easy to use at the farm scale and also for supply chains of major corporations
- 4. Demonstrate examples of how to use the tool and how to interpret the results for implementing specific practices in specific locations
- 5. Explain how project managers can use the tool to evaluate and report on project-level outcomes associated with adoption of conservation practices by multiple farmers in a project

FAST-GHG tool, origin and use

Christina Tonitto, Dominic Woolf, and Peter Woodbury developed the FAST-GHG tool to quantify how soil health management practices can reduce greenhouse gas emissions

Developed with support from the Cornell Atkinson Center for Sustainability in partnership with Environmental Defense Fund and The Nature Conservancy

- Easy to use at both the farm scale and for supply chains of major corporations
- Launched September 2020 by Walmart to support their Project Gigaton to reduce GHG emission from their food supply chains
- Also available as an open-source, on-line calculator http://www.atkinson.cornell.edu/research/fastghg.php
- Includes cover crops, tillage, and N fertilizer management for corn, soybean, and wheat throughout the USA except Hawaii and Alaska

The FAST-GHG Tool integrates:

How does the FAST-GHG tool work?

Comprehensive synthesis of scientific data

Data on crop yield and nitrogen fertilizer rates from the National Agricultural Statistics Service

Data on soil properties from national databases

Rigorous calculations developed by scientific experts and reviewed by additional scientific experts

FAST-GHG Tool uses detailed and comprehensive calculations:

How does the FAST-GHG tool work? Builds on multiple previous research projects by our team Greenhouse gas emissions from soil, machinery, fertilizer, etc. Changes in soil carbon and nitrogen over time Effects of tillage and cover crops based on peer-reviewed field studies **Equation 2:** Net carbon dioxide reduction from soil health practices

 $\Delta \text{CO2} = \alpha \cdot (1 - R) \cdot \Delta \text{SOC} + \Delta \text{CO2}_F + \Delta \text{CO2}_I + \Delta \text{CO2}_N + \Delta \text{CO2}_L$

Where:

How does the FAST-GHG tool work? $\Delta CO2 =$ Net avoided CO₂ emissions, Mg CO₂ ha⁻¹ yr⁻¹,

 $\Delta SOC =$ Sequestered soil organic carbon, Mg C ha⁻¹ yr⁻¹),

R = Risk of reversal of SOC sequestration,

 α = Conversion factor from carbon to CO₂ (see table 1),

 $\Delta CO2_F = Change in CO_2 \text{ emissions from machinery use in field operations} (Mg CO_2 ha^{-1} yr^{-1}),$

 $\Delta CO2_{I} = Change in CO_{2} \text{ emissions from agricultural inputs, excluding nitrogen fertilizer (Mg CO_{2} ha⁻¹ yr⁻¹),$

 $\Delta CO2_N = Change in CO_2 emissions from nitrogen fertilizer production (Mg CO₂ ha⁻¹ yr⁻¹),$

 $\Delta CO2_L =$ Change in CO₂ emissions from leakage (Mg CO₂ ha⁻¹ yr⁻¹),

Snap Shot of Features	FAST-GHG Tool
Scale & level of specificity	Field level Predicts average based on default or site-specific inputs
Outcomes	Greenhouse gas emission reductions (Mg CO2e/ha) including breakdown of 7 source categories
Conservation practices	Cover crop (legume, non-legume, mixed), tillage, fertilizer management
Land uses & production systems	Commodity crop production (corn, wheat, soybean)
States & territories	CONUS only
How much time, data, & skills needed	Easy to use web interface, Just 3 to 11 clicks to get results. Default crop yield and N rate data available for all 3 crops and all counties
Special note	Includes factors not in other tools. Based mostly on field data

Key strengths of FAST-GHG

Accounts for impacts of management practices

Can make estimates with no farm-specific data

Makes improved estimates with farm-specific data

Grounded in mechanistic understanding of C and N cycles

Grounded in results of field experiments

Publicly available

Thoroughly documented

Key limitations of FAST-GHG

The default N fertilizer rate for a few states with much manure use (e.g. NY) should not be used for most purposes. Instead, use the "advanced inputs" option to define the N rate and yield

Does not include manure

Units are metric, not English

Cannot include all variations among farms and practices

The publicly available version is for a single combination of crop, location, and management practices

We do not currently have resources to provide user support

We hope to address some of the above issues, but don't have a target date yet

How is FAST-GHG different from other GHG tools?

Grounded in results of field experiments

Includes important effects not included in most tools:

Additionality

Fertilizer manufacturing

Leakage

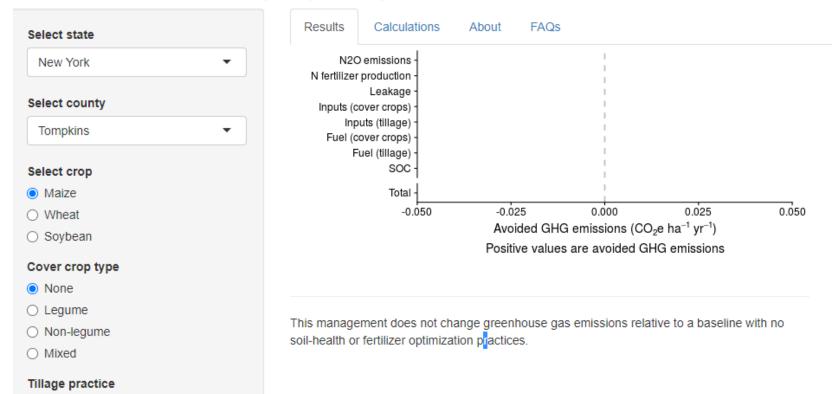
Fuel use

Permanence

Reports 7 source categories for results

Reports details of calculations.

Complete documentation of sources and methods


FAST-GHG™

FAST-GHG

tool

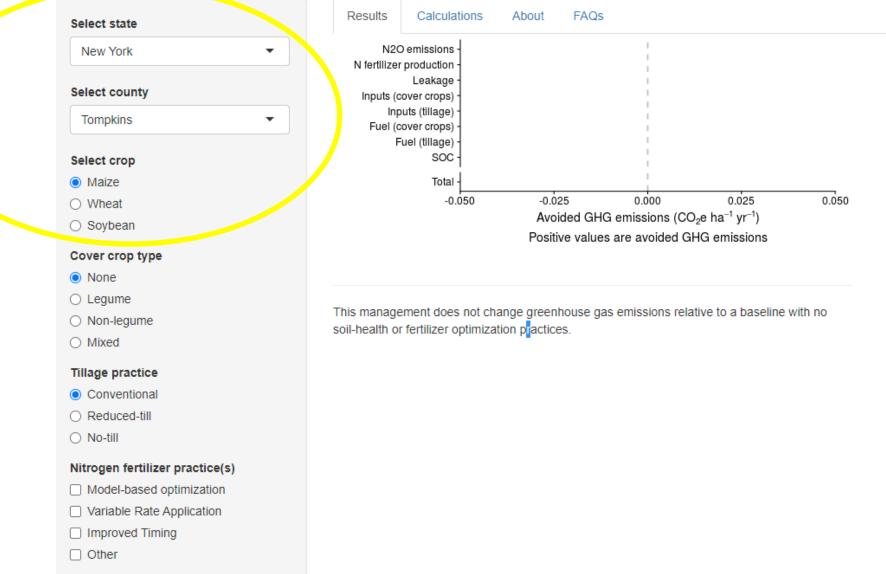
Fertilizer And Soil Tool for GreenHouse Gases

A FAST calculator for climate-change mitigation in agriculture

- Reduced-till
- O No-till

Nitrogen fertilizer practice(s)

- Model-based optimization
- Variable Rate Application
- Improved Timing
- Other
- Show advanced inputs


FAST-GHG™

FAST-GHG

tool

Fertilizer And Soil Tool for GreenHouse Gases

A FAST calculator for climate-change mitigation in agriculture

Show advanced inputs

FAST-GHG™

 ∇

 ∇

 FAST-GHG
 Fertilizer And Soil Tool for GreenHouse Gases

 A FAST calculator for climate-change mitigation in agriculture

Select state

tool

New York

Select county

Tompkins

Select crop

- Maize
- Wheat
- Soybean

FAST-GHG tool

FAST-GHG™

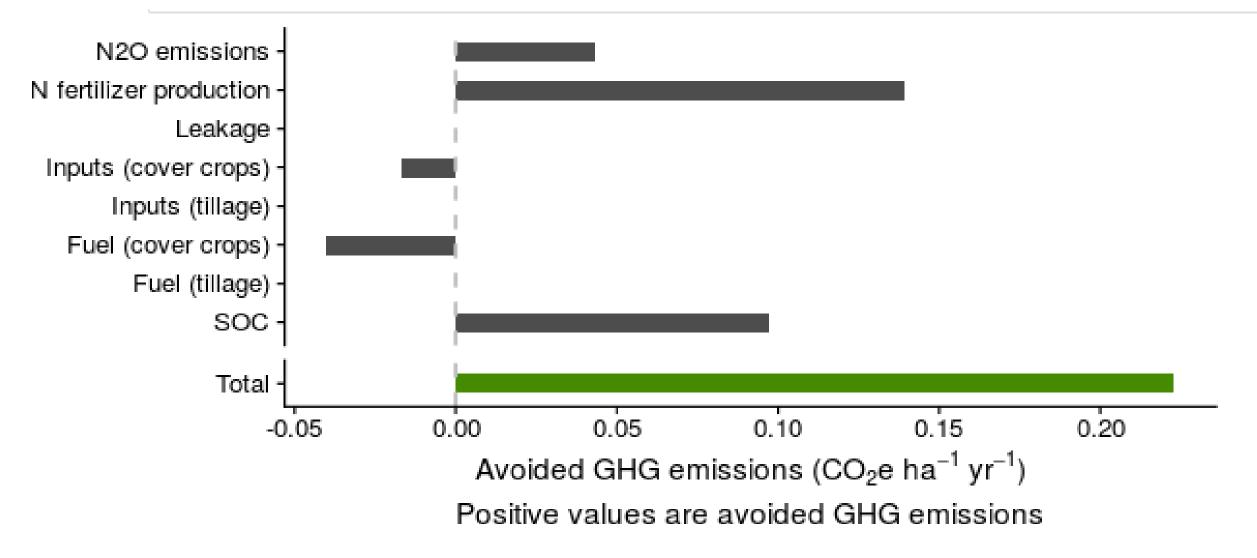
Fertilizer And Soil Tool for GreenHouse Gases A FAST calculator for climate-change mitigation in agriculture

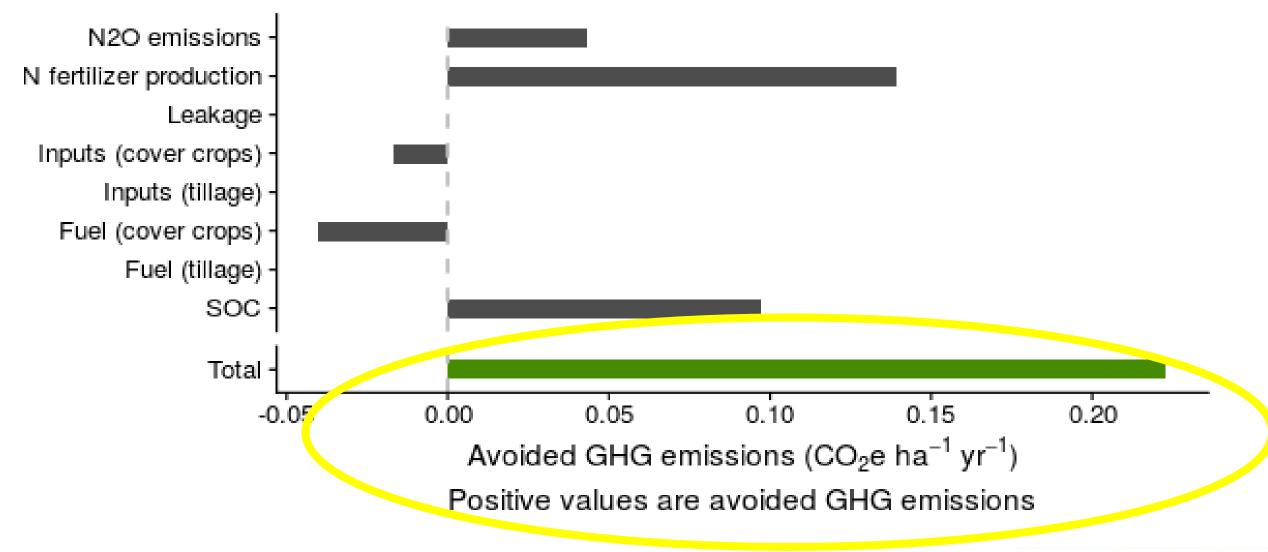
Cover crop type

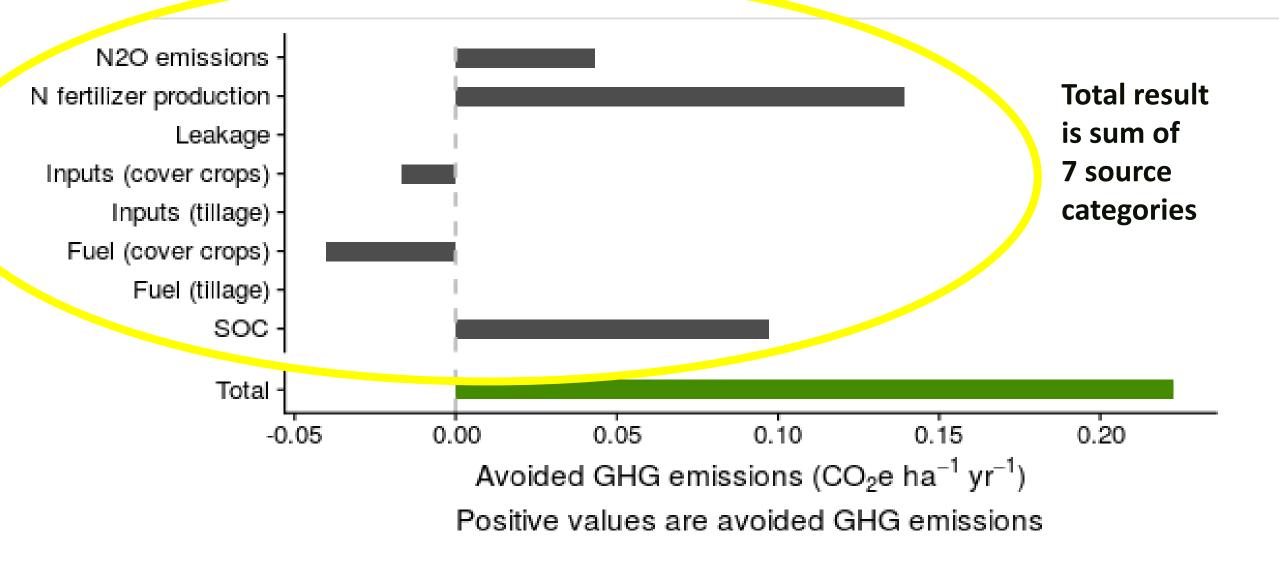
- None
- Legume
- Non-legume
- Mixed

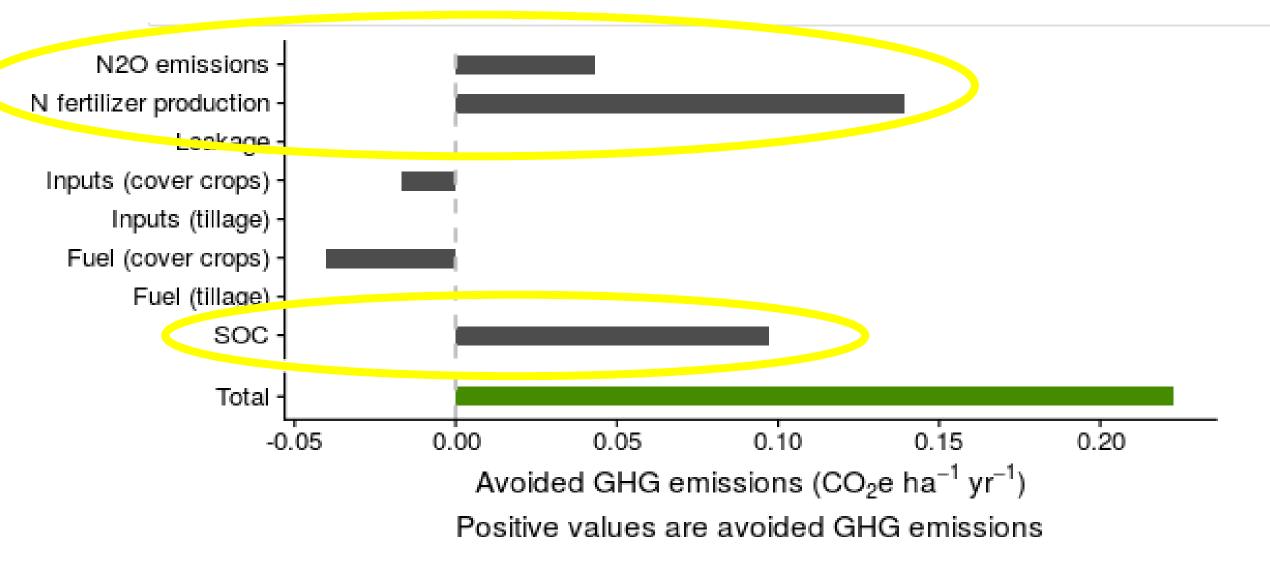
Tillage practice

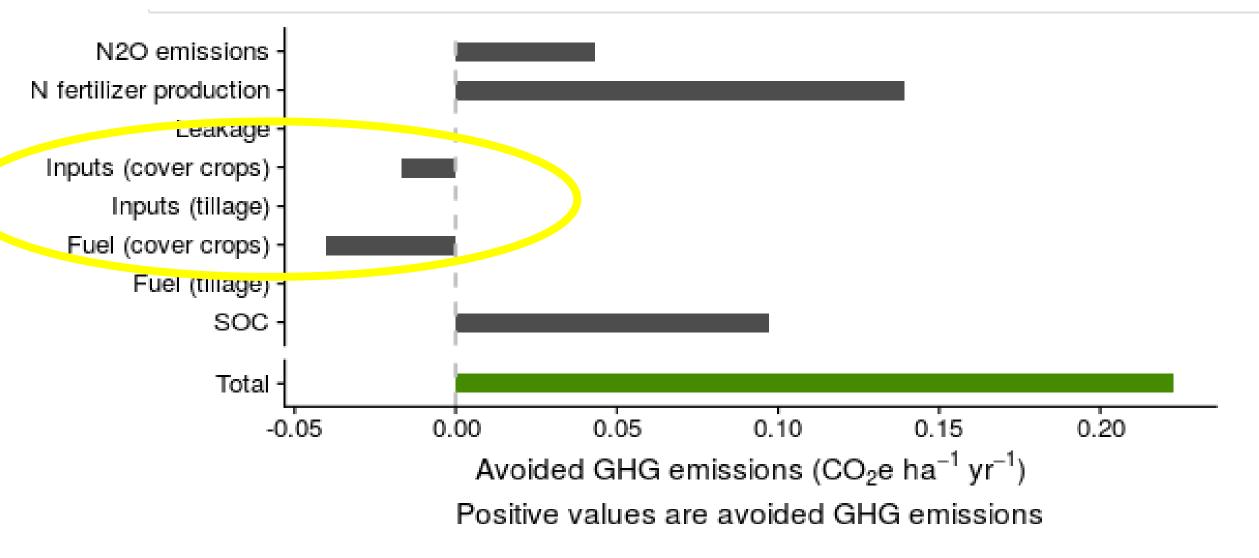
- Conventional
- Reduced-till
- O No-till

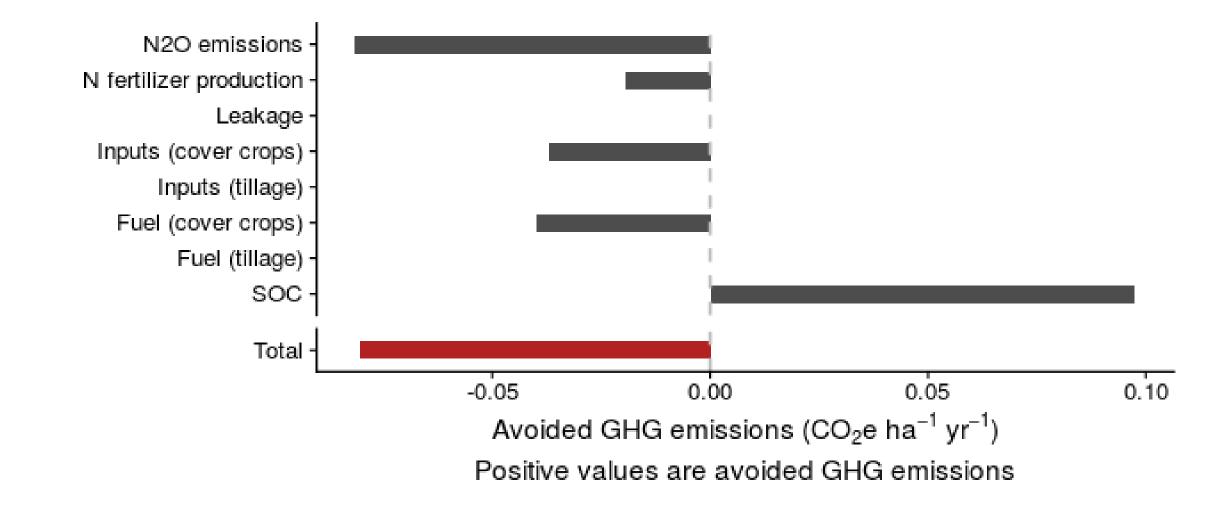

Nitrogen fertilizer practice(s)

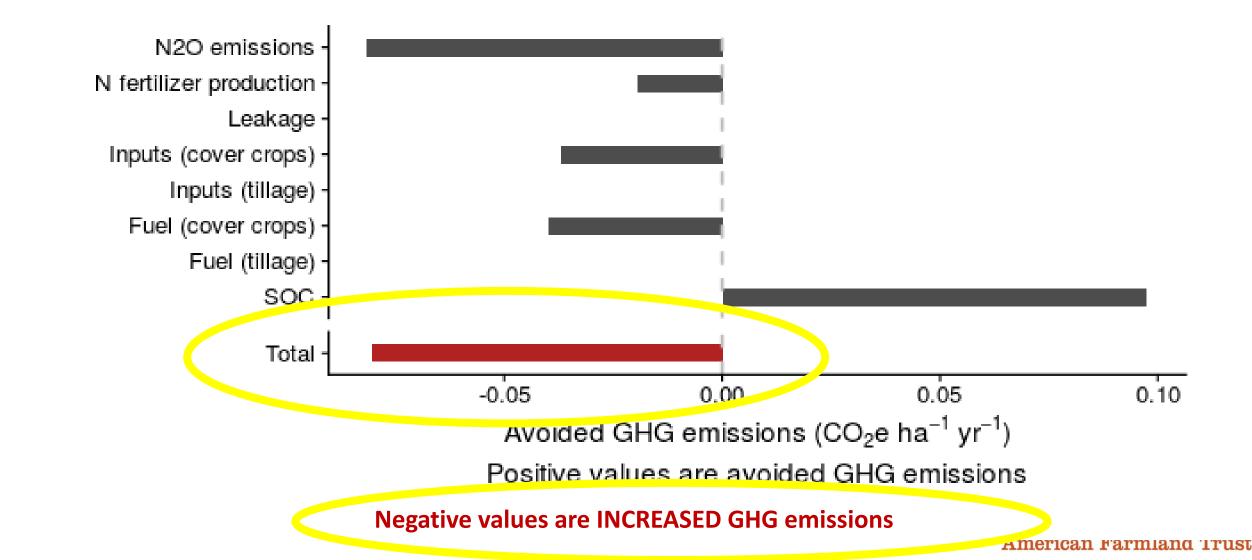

- Model-based optimization
- Variable Rate Application
- Improved Timing
- Other

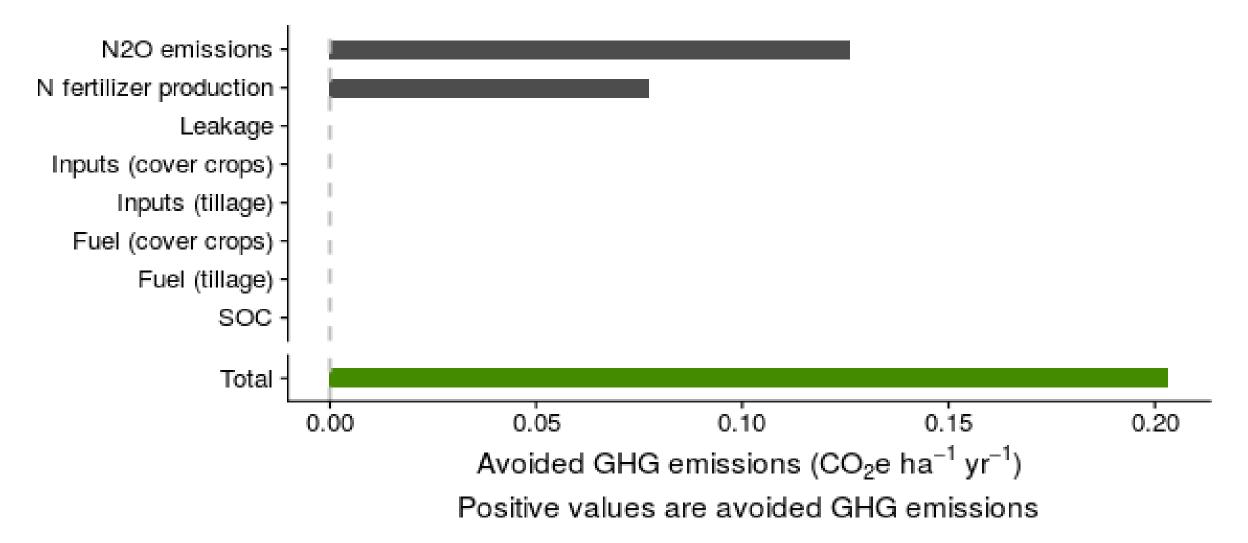


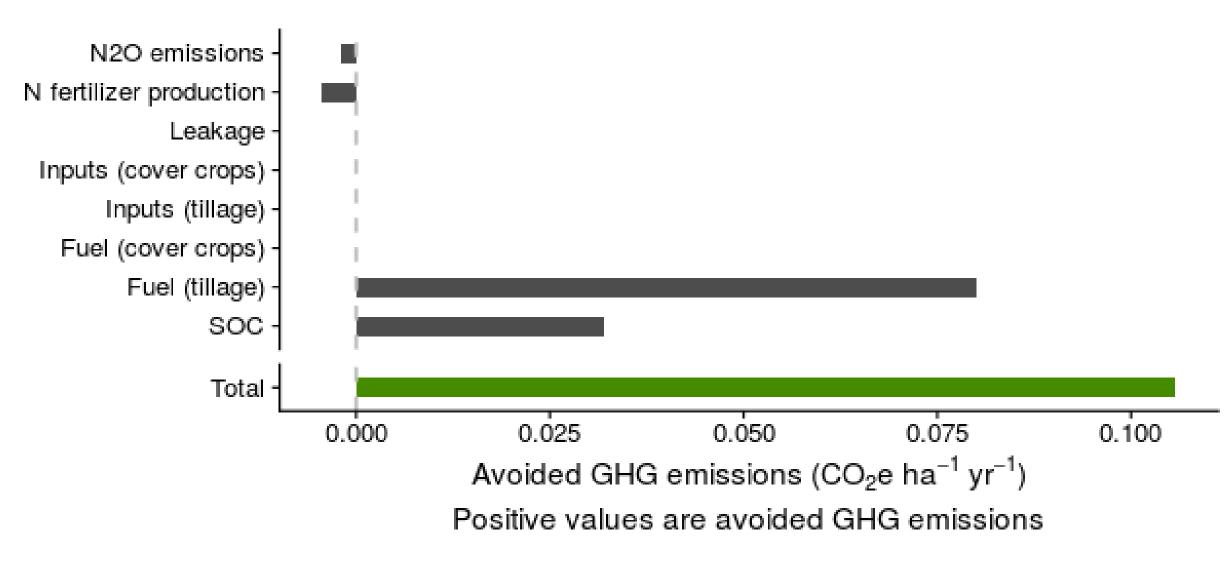

Crop examples: Four management practices for corn (1) Cover crops -- legume (2) Cover crops -- non-legume (3) Precision N fertilizer management (4) Reduced-till Location: Tompkins County, New York Corn for grain Crop: 8,100 kg/ha (129 bu/ac) Crop yield: 135 kg N/ (120 lb/ac) Crop N rate: Soil texture: Silt Loam





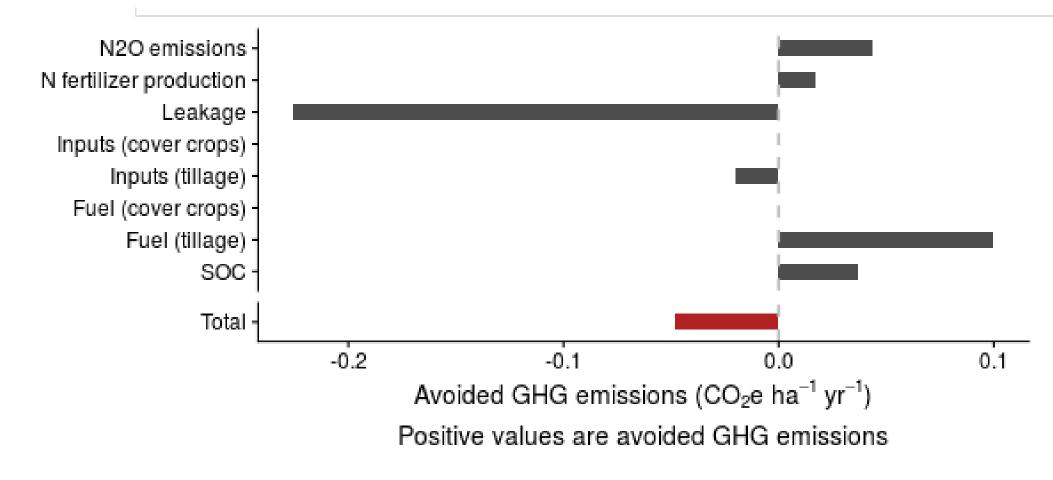



Non-legume cover crop **INCREASES** net GHG emissions because more N fertilizer is needed, increasing N2O emissions, inputs, and fuel and these emissions exceed the benefit of increased soil carbon


Non-legume cover crop **INCREASES** net GHG emissions because more N fertilizer is needed, increasing N2O emissions, inputs, and fuel and these emissions exceed the benefit of increased soil carbon

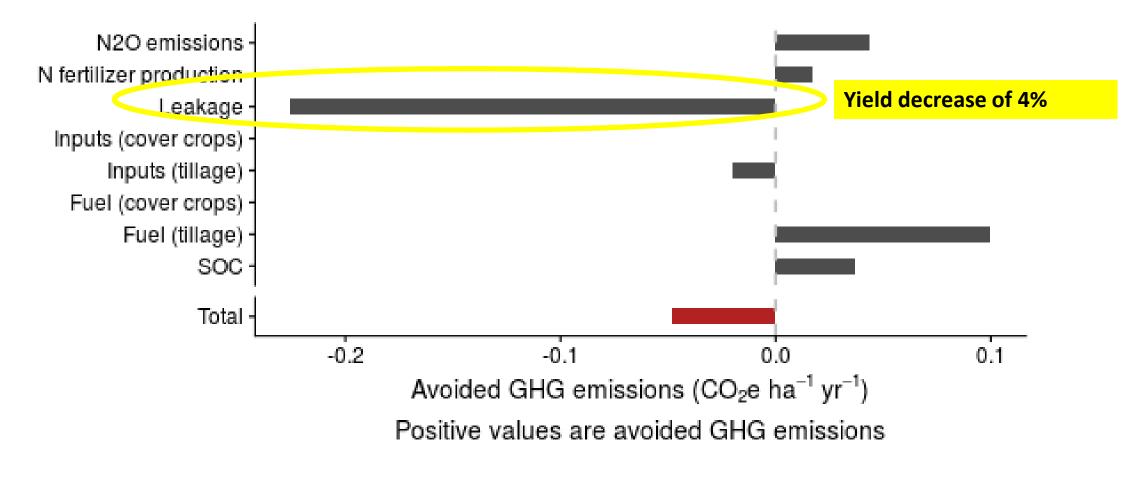
Precision N management **DECREASES** net GHG emissions from maize due to decreased N₂O emissions and reduced N fertilizer production.

No-till **DECREASES** net GHG emissions through reduced on-farm fuel use, and a small increase in SOC.



FAST-GHG wheat no-till example

Location: Tompkins County, New York Crop: Wheat Crop yield: 4491 kg/ha (67 bu/ac) Crop N rate: 99 kg N/ (88 lb/ac) Soil texture: Silt Loam


FAST-GHG wheat no-till example

This management results in a net increase in greenhouse gas emissions of 0.05 Mg CO₂-eq ha⁻¹ yr⁻¹, relative to a baseline with no soil-health or fertilizer optimization practices.

Trust

FAST-GHG wheat no-till example

This management results in a net **increase** in greenhouse gas emissions of **0.05 Mg CO₂-eq ha**⁻¹ yr⁻¹, relative to a baseline with no soil-health or fertilizer optimization practices.

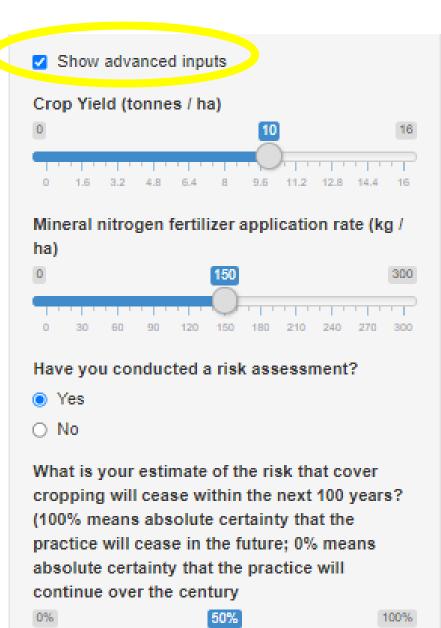
Trust

FAST-GHG tool has optional advanced inputs

Select state	Results Calculations About	FAQs
Alabama	▼ N2O emissions -	
	N fertilizer production - Leakage -	
Select county	Inputs (cover crops) -	
Unknown	Inputs (tillage) -	
	Fuel (cover crops) - Fuel (tillage) -	
Select crop	SOC -	
Maize	Total -	
⊃ Wheat	-0.050 -0.0	
Soybean		oided GHG emissions (CO ₂ e ha ⁻¹ yr ⁻¹)
Cover crop type	Pos	itive values are avoided GHG emissions
None		
) Legume		
) Non-legume		nhouse gas emissions relative to a baseline with no soil-
Mixed	health or fertilizer optimization practices. Note that accuracy will be improved if yo	
,		a speen, a sean,
~		
Fillage practice		
illage practice Conventional		
illage practice Conventional Reduced-till		
Fillage practice Conventional Reduced-till No-till		
illage practice Conventional Reduced-till No-till litrogen fertilizer practice(s)		
illage practice Conventional Reduced-till No-till litrogen fertilizer practice(s) Model-based optimization		
illage practice Conventional Reduced-till No-till litrogen fertilizer practice(s) Model-based optimization Variable Rate Application		
Fillage practice Conventional Reduced-till No-till Nitrogen fertilizer practice(s) Model-based optimization Variable Rate Application Improved Timing		
Fillage practice Conventional Reduced-till No-till Nitrogen fertilizer practice(s) Model-based optimization Variable Rate Application Improved Timing Other		

FAST-GHG™

Fortilizer And Soil Tool for GreenHouse Gases

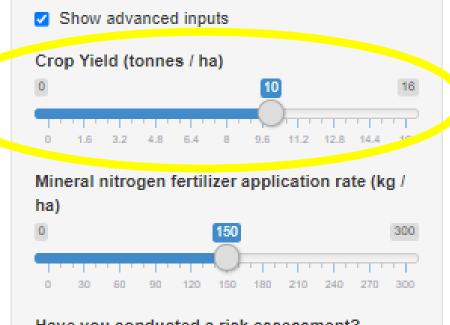

FAST-GHG tool has optional advanced inputs

FAST-GHG™

A FAST calculator for climate-change Select state	Results Calculations	About FAQ	s		
Alabama	▼ N2O emissions -				
Select county	N fertilizer production - Leakage - Inputs (cover crops) -				
Unknown	 Inputs (tillage) - Fuel (cover crops) - 				
Select crop	Fuel (tillage) - SOC -				
Maize	Total -				
⊖ Wheat	-0.050	-0.025	0.000	0.025	0.050
 Soybean 		Avoided GH	G emissions (CO	₂ena'yr')	
			es are avoided GH	IG emissions	
Cover crop type			es are avoided GH	HG emissions	
			es are avoided GH	HG emissions	
Cover crop type	This management does not ab	Positive value			
Cover crop type None 	This management does not ch health or fertilizer optimization	Positive value ange greenhouse g			with no soil
Cover crop type None Legume	This management does not ch health or fertilizer optimization Note that accuracy will be imp	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed Tillage practice	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed Tillage practice Conventional	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed Tillage practice Conventional Reduced-till	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed Tillage practice Conventional Reduced-till No-till	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
Cover crop type None Legume Non-legume Mixed Tillage practice Conventional Reduced-till No-till Nitrogen fertilizer practice(s)	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil
 Cover crop type None Legume Non-legume Mixed Tillage practice Conventional Reduced-till No-till Nitrogen fertilizer practice(s) Model-based optimization 	health or fertilizer optimization	Positive value ange greenhouse g practices.	jas emissions rela		with no soil

rust

FAST-GHG tool – advanced inputs


50

40

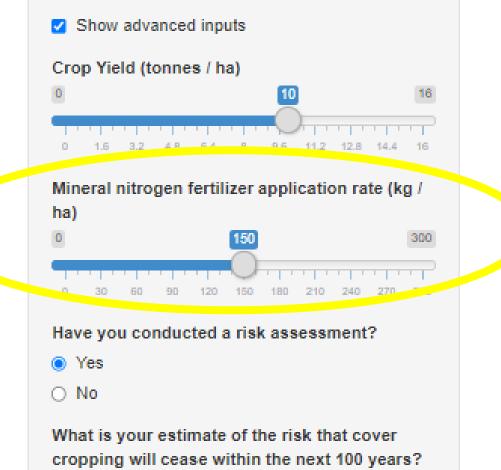
0

FAST-GHG tool – advanced inputs

Have you conducted a risk assessment?

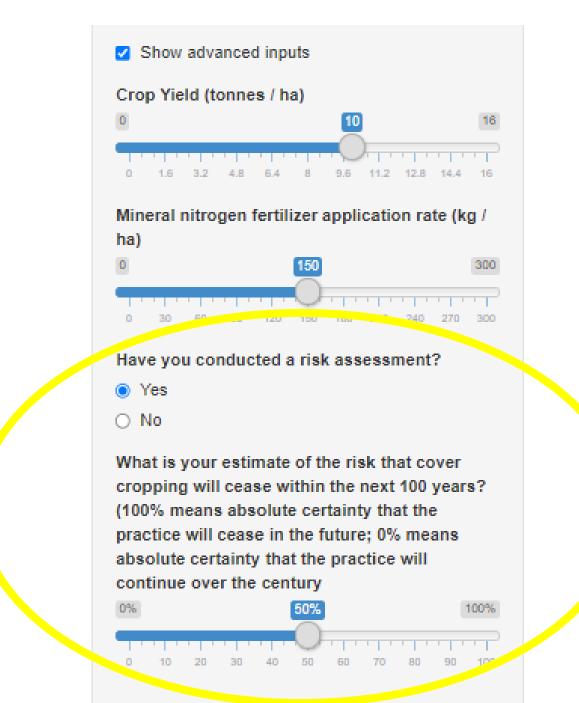
Yes

O No


What is your estimate of the risk that cover cropping will cease within the next 100 years? (100% means absolute certainty that the practice will cease in the future; 0% means absolute certainty that the practice will continue over the century

 0%
 50%
 100%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100



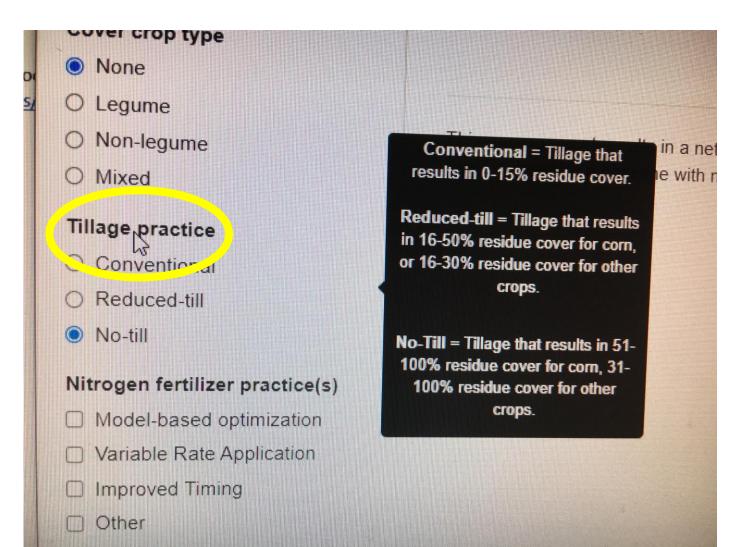
cropping will cease within the next 100 years? (100% means absolute certainty that the practice will cease in the future; 0% means absolute certainty that the practice will continue over the century

FAST-GHG tool – advanced inputs

FAST-GHG Tool can be used for multiple fields under limited conditions

Results are for one combination of location (county or state), crop, and management practices on a per hectare basis

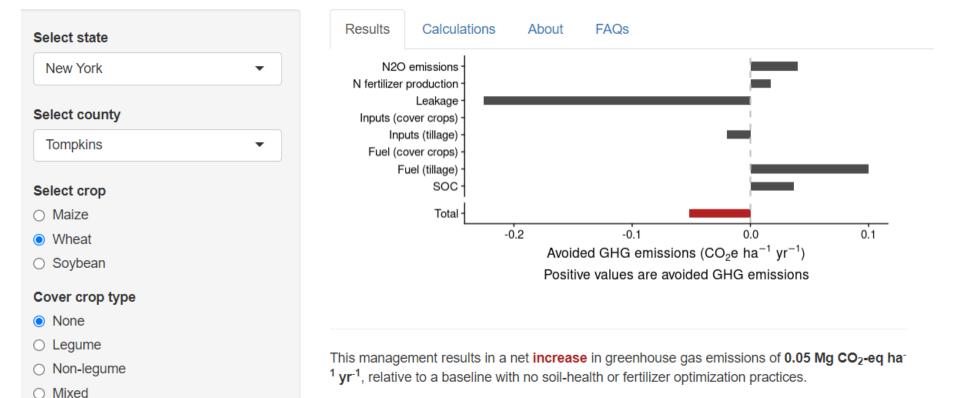
You can multiply results by total area for each combination


This works easily using default data on yield and N rate

But if you have different yield and N rate data for each field, you must run them separately

Lots of information available from the FAST-GHG tool

• Hover to get a popup with definitions

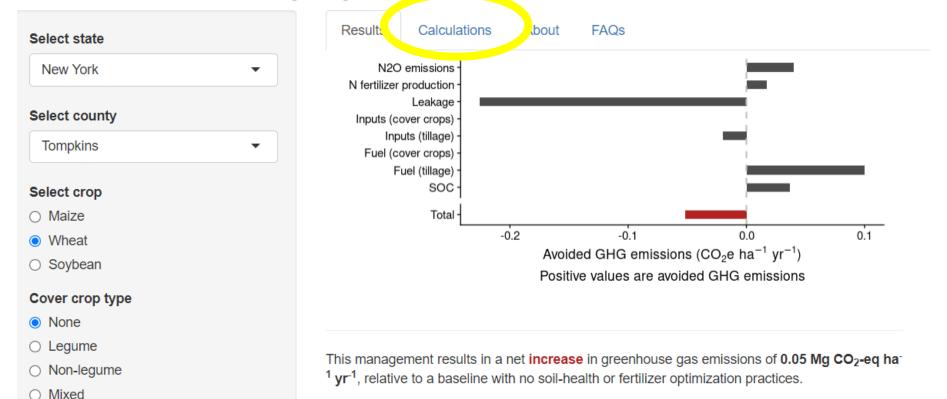


Lots of information available from the FAST-GHG tool FAST-GHG™

Fertilizer And Soil Tool for GreenHouse Gases

A FAST calculator for climate-change mitigation in agriculture

No-till


Tillage practice

Conventional
Reduced-till

Lots of information available from the FAST-GHG tool FAST-GHG™

Fertilizer And Soil Tool for GreenHouse Gases

A FAST calculator for climate-change mitigation in agriculture

American Farmland Trust

No-till

Tillage practice

Conventional
Reduced-till

FAST-GHG tool – show user inputs

About FAQs

For complete documentation of the method, which includes the Tables and Equations referenced by number below, please refer to the documentation available here.

User Inputs

Description	Value	Units
State	New York	
County	Tompkins	
Crop	Wheat	
Cover Crop	None	
Tillage	No-till	
N management practice(s)		
Decrease in N rate	NA	kg N / ha / yr
Reversal risk	50	%

FAST-GHG tool – show Derived Parameters

Derived parameters

Source	Description	Value	Units
Table 18	Temperature	Cool	
Table 18	Moisture	Moist	
Table 18	Clay	20.6	%
Table 18	Soil	Silty	
Table 18	Yield	4491.37	kg grain / ha /yr
Table 18	N rate	99.06	kg N / ha / yr
Table 3	SOC change from cover crops	0	Mg C / ha / yr
Table 4	SOC change from tillage	0.08	Mg C / ha / yr
Table 5	SOC permanence factor for cover crops	0.28	
Table 5	SOC permanence factor for tillage	0.25	
Table 6	Input emissions for cover crops	0	Mg CO2 / ha / yr
Table 6	Fuel emissions for cover crops	0	Mg CO2 / ha / yr
Table 7	Input emissions for tillage	-0.02	Mg CO2 / ha / yr
Table 7	Fuel emissions for tillage	0.1	Mg CO2 / ha / yr

NOTE: Parameters continue, not all shown on slide

FAST-GHG tool

- show Calculations

`	cu	lati	n	C
Jai	Cu	au		13

Source	Description	Value	Units
Eq. 5	Change in yield	-179.6548740	kg grain / ha / yr
Table 15	Change in N input from cover crops	0.0000000	kg N / ha / yr
Table 15	Change in N input from tillage	3.9563963	kg N / ha / yr
Table 15	Change in N input from group-C fertilizer management	0.0000000	kg N / ha / yr
Table 15	Change in N input from group-D fertilizer management	0.0000000	kg N / ha / yr
Eq. 10	Overall change in N input	3.9563963	kg N / ha / yr
Eq. 9	Change in emissions from N fertilizer production	0.0174477	Mg CO2e / ha / yr
Eq. 8	Change in indirect N2O emissions	0.0465549	kg N2O / ha / yr
Eq. 7	Change in direct N2O emissions	0.0993055	kg N2O / ha / yr
Eq. 6	Change in overall N2O emissions	0.0001459	Mg N2O / ha / yr
Eq. 4	Leakage emissions	-0.2255106	Mg CO2e / ha / yr
Eq. 3	Annualized SOC sequestration	0.0200000	Mg C / ha / yr
Eq. 2	Risk-adjusted SOC sequestration credit	0.0366667	Mg CO2 / ha / yr
Eq. 2	Overall CO2-reduction credit	-0.0913963	Mg CO2 / ha / yr
Eq. 1	Overall GHG-reduction credit	-0.0515764	Mg CO2e / ha / yr

t

FAST-GHG tool – show Calculations

Calculations

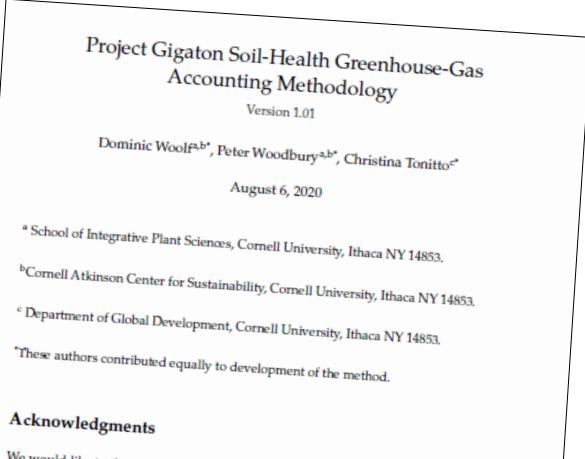
Source	Description	Value	Units
Eq. 5	Change in yield	-179.6548740	kg grain / ha / yr
Table 15	Change in N input from cover crops	0.0000000	kg N / ha / yr
Table 15	Change in N input from tillage	3.9563963	kg N / ha / yr
Table 15	Change in N input from group-C fertilizer management	0.0000000	kg N / ha / yr
Table 15	Change in N input from group-D fertilizer management	0.0000000	kg N / ha / yr
Eq. 10	Overall change in N input	3.9563963	kg N / ha / yr
Eq. 9	Change in emissions from N fertilizer production	0.0174477	Mg CO2e / ha / yr
Eq. 8	Change in indirect N2O emissions	0.0465549	kg N2O / ha / yr
Eq. 7	Change in direct N2O emissions	0.0993055	kg N2O / ha / yr
Eq. 6	Change in overall N2O emissions	0.0001459	Mg N2O / ha / yr
Eq. ∕	Leakage emissions	-0.2255106	Mg CO2e / ha / yr
Eq. 3	Annualized SOO sequestration	0.0200000	wg C / ha / yr
Eq. 2	Risk-adjusted SOC sequestration credit	0.0366667	Mg CO2 / ha / yr
Eq. 2	Overall CO2-reduction credit	-0.0913963	Mg CO2 / ha / yr
Eq. 1	Overall GHG-reduction credit	-0.0515764	Mg CO2e / ha / yr

Results

Calculations

For complete documentation of the method, which includes the Tables and Equations referenced by number below, please refer to the documentation available here.

2) The soil organic carbon (SOC) change in FAST-GHG seems low compared to other calculators. Why is that?


FAST-GHG accounts for several issues that are often overlooked in many SOC calculations. These include a discount for "permanence"—the risk that a practice will not always be continued indefinitely—because any gains in SOC will be lost again if the management practice ceases. Also, soil carbon will not keep accumulating indefinitely after a practice is begun, but will reach a new steady state after several decades. FAST-GHG accounts for the average benefit over 100 years.

3) Why does FAST-GHG calculate average greenhouse gases over 100 years? That seems like a long time horizon and many people could be interested in the shorter-term impacts.

FAST-GHG tool – show complete documentation

<https://github.com/domwoolf/SoilHealthGHGs/blob/master/man/OverallMethods_1.01.pdf>

We would like to thank the Cornell Atkinson Center for Sustainability for funding the development of this methodology. We thank our external¹ and internal² advisory committee members for many useful comments and suggestions throughout the methodology development. This work represents the views of the listed authors.

Online Tool Demonstration

Utility and Limitations of Tools Like FAST-GHG

BENEFITS

LIMITATIONS

Can be used to make estimates of the average benefit of practices

Helps identify possible benefits and challenges with greenhouse gas mitigation strategies Does not function as verification of mitigation from an activity

Runs for only one combination of crop and management practices in a county or state at a time

Whichever tool you use, make sure that GHG projects are permanent, real, and verifiable

Permanent Climate change is long-term, solutions must be also

Real Account for all 3 GHG's account for NET mitigation.

Assure that emissions don't just shift to another location (leakage), for example if a practice reduces yield.

Verifiable Are cost effectively metered, monitored, or measured.

Acknowledgements

We thank the **Cornell Atkinson Center** for Sustainability for funding FAST-GHG development.

We thank our **advisory committee** members for many useful comments and suggestions: Doria Gordon and Joseph Rudek from Environmental Defense Fund, Lesley Atwood, Joseph Fargione, and Stephen Wood from The Nature Conservancy, and Johannes Lehmann and Andrew McDonald from Cornell University.

We also thank **Cornell faculty** Rebecca Nelson, Matt Ryan, and Harold Van Es for additional feedback.

This work represents the views of the authors: Christina Tonitto, Peter Woodbury, Dominic Woolf.

For Further Information

Natural and Working Lands

<https://blogs.cornell.edu/workinglands/>

FAST-GHG Tool

<https://www.atkinson.cornell.edu/fast-ghg/>

Peter Woodbury, Cornell University

Next steps in our outcomes estimation journey

- □ Join March 6 for the Cool Farm Tool webinar
- Fill out the 8-question (2-min) online evaluation survey
- □ Schedule a free "coaching" session with us
 - **Email** <u>atappross@farmland.org</u>, RE: Coaching Request
- □ Order a free print copy of the OET Guide
 - ❑ Keyword: "AFT outcomes tools"

1	ோ	
	\checkmark	=
		=

Please keep in touch: outcomestools@farmland.org

