Outcomes Estimation Tools Training Webinar Series

Featuring: Critical Source Area Identification And Management

> April 3, 2024 Noon to 1:30 pm eastern

Michelle Perez, PhD Water Initiative Director

Aysha Tapp Ross Water & Soil Health Scientist

American Farmland Trust

Agenda

- Welcome, Poll (10 min)
- Critical Source Area Handbook Tate Wentz, Arkansas Dept of Agriculture, Water Quality Division Manager (20 min)
- Oklahoma's use of HAWQS method Shanon Phillips,
 Oklahoma Conservation Commission, Water Quality Division
 Director (20 min)
- Illinois River Watershed Partnership identification and implementation of BMPs - Leif Kindberg, (Illinois River Watershed Partnership Director (20 min)
- Q&A (20 min)

Zoom Webinar Reminders

- Use Q&A Box last 15 minutes (Vote up!)
- Use Zoom Direct Message feature to Aysha if having technical difficulties
- Email with resources to follow each webinar
- Recordings posted on the webinar series site the following Monday
- Evaluation survey in the Chat Box
 - Complete to be entered to win a \$25 gift card!!

Time for 3 polls!

Tools in 2023 Trainings*

May 3: Webinar Launch & PCOC (recording)

June 7: Model My Watershed (recording)

July 12: Nutrient Tracking Tool (NTT) (recording)

<u>August 2: NRCS Cover Crop Economics Tool</u> (economic) (recording)

September 6: FieldPrint Platform (recording)

October 4: EPA PLET (water quality) (recording)

<u>November 1: PTMApp Web Tool (water</u> <u>quality)</u> (recording)

December 6: AFT Retrospective-Soil Health Economic Calculator (R-SHEC) Tool (recording)

Tools in 2024 Trainings*

January 10: SIPES Method/SIDMA Tool (recording)

February 7: Fast-GHG (climate) (recording)

March 6: Cool Farm Tool (climate) (recording)

April 3: Critical Source Area Identification and Management

May 1: COMET-Farm & COMET-Planner (climate)

June 5: CAST looi (water quality)

July 10: TBD

August 7: TBD

September 4: AFT Predictive-Soil Health Economic Calculator (P-SHEC) Tool

3 4 4 5

American Farmland Trust

Planning and Implementation of Conservation in Critical Source Areas through Watershed Based Management Planning in a Multi-Jurisdictional Watershed

Tate Wentz · Water Quality Section Manager · Arkansas Dept. of AgricultureShanon Phillips · Water Quality Division Director · Oklahoma Conservation CommissionLeif Kindberg · Director · Illinois River Watershed Partnership

Tate Wentz

Water Quality Section Manager Arkansas Dept. of Agriculture

Shanon Phillips

Water Quality Division Director Oklahoma Conservation Commission

Leif Kindberg

Director Illinois River Watershed Partn

Today's Training Session

11:00PM....Introductions

11:10PM...Highlight key components and methodologies of the CSA Handbook;

11:30PM...Oklahoma's use of Hydrologic and Analysis Water QualitySystem (HAWQS) to achieve watershed prioritization
11:50PM...How the Illinois River Watershed Partnership, a local non-profit, has guided local-level identification and implementation of BMPs across watershed sub-basins
12:15PM...Q&A
12:30PM...Conclude

All times are CST

Voluntary, Non-Regulatory Watershed Management Plan for the Illinois River Watershed

3rd Stakeholder Meeting West Siloam Springs, OK August 10, 2023

What is a Watershed Management Plan?

Watershed management planning is a process that results in a plan or a blueprint of how to best protect and improve the water quality and other natural resources in a watershed.

https://www.epa.gov/sites/default/files/2015-09/documents/2008 04 18 nps watershed handbook handbook-2.pdf

1.Element A - Causes/Sources of Pollution Identified 2.Element B - Expected Load Reductions for Solutions Identified 3.Element C - Nonpoint Source Management Measures Identified 4.Element D - Technical and Financial Assistance **5.**Element E - Education and Outreach 6.Element F - Implementation Schedule

7.Element G - Milestones Identified

8.Element H - Load Reduction Evaluation Criteria

9.Element I - Monitoring

CRITICAL SOURCE AREA IDENTIFICATION AND BMP SELECTION: SUPPLEMENT TO WATERSHED PLANNING HANDBOOK

United States Environmental Protection Agency Office of Water Nonpoint Source Management Branch Washington, DC 20460 EPA 841-K-18-001 July 2018

Developed under Contract to U.S. Environmental Protection Agency by Tetra Tech, Inc. GS Contract #GS-10F-0268K Authors: Dressing, S.A.,

https://www.epa.gov/sites/default/files/2018-08/documents/critical_source_area_identification_and_bmp_selection_final_5-11-18cover.pdf

CSA Identification and BMP Selection

Establish Priorities

- Restoring impaired waters
- Protecting high-quality waters
- Directing resources/BMPs to where they are needed

Arkansas's 2022 Draft 303(d) List

Describe Connections

Estimate Contributions

Watershed Science Institute Technical Report

Stream Corridor Inventory and Assessment Techniques

A guide to site, project and landscape approaches suitable for local conservation programs

Prepared by an interdisciplinary and multi-organizational team under the leadership of the Watershed Science Institute, USDA-Natural Resources Conser-vation Service (NRCS). The institute is composed of an interdisciplinary group of specialists located at university locations throughout the United States. The vision of the Watershed Science Institute is "healthy watersheds and sustainable landscapes." Additional information can be obtained at http://www.wcc.rcs.usda.gov/watershed/

	3	BEYM DE CONSTRUCTION BEYME DE CONSTRUCTION BEYME DE CONSTRUCTION Protocoste for Use in Waddebie Stremm and Phyrons Protocoste, Bentile Constructions, and Path	TER QUAI
idors - ion and			Surface Wate
ıilibrium			RIPARIAN AREA MA
effects of			TE ITITAL INS
stream sessment		Visited Warr of Chrois Constr Technical Not Po-1 Stream Visual Assessment Protocol	A fair faith in Air
iide	4		
ents	5	I Harrison and a second	A22017655
utes of inventory techniques	7		
		Figure 1. A variety of notable site-l	evel inventory and

13

niques

Figure 1. A variety of notable site-level inventory and assessment techniques have been developed and perfected over recent years to help address the conservation and management of stream corridors. Stream corridors and the water flowing through them are critical elements of the landscape and key indicators of watershed condition.

https://www.wcc.nrcs.usda.gov/ftpref/wntsc/strmRest/Str eamCorridorInventoryTechniques.pdf Urban Subwatershed Restoration Manual Series

https://owl.cwp.org/mdocs-posts/urban-subwatershedrestoration-manual-series-manual-10/ Inspection/validation of sub-watershed contribution assumptions

Consideration of overlooked contributions

Quantitative/Qualitative assessments

vised

BMP Selection

https://www.epa.gov/water-research/best-management-practices-bmps-siting-tool

https://bmpdatabase.org/

https://farmlandinfo.org/media/outcomes-estimation-tools-training-webinar-series/

2022 Arkansas Nutrient Reduction Strategy (ANRS)

ARKANSAS NUTRIENT REDUCTION MEASUREMENT FRAMEWORK:

NUTRIENT REDUCTION EFFICIENCIES FOR SELECTED AGRICULTURAL MANAGEMENT PRACTICES

MAY 24, 2019

https://www.agriculture.arkansas.gov/wp-content/uploads/2022/07/2022-7-21-ANRS-FINAL-PUBLISH.pdf

Example Target CSA's and BMP Opportunities

Practice	<i>E. coli</i> Reduction	Sediment Reduction	Total N Reduction	Total P Reduction
Prescribed grazing	65%	30%	10%	15%
Stream exclusion/ controlled access	45%	60%	10%	15%
Alternative water facility	70%	30%	10%	15%
Herbaceous riparian buffer	50%	60%	35%	35%
Forest riparian buffer	50%	60%	35%	35%

Inputs

SWAT Model

Output

IRW Sub-Basin Prioritization

- **Sediment Loads**
 - %tile ranks among sub-basins

Example Sub-Basin Prioritization

Example Target CSA's and BMP Opportunities

Table. 4.6.DEQ ecoregion nutrient assessment values (75th percentiles) (J. Martin, DEQ,
personal communication, 9/29/22; B. Olsen, DEQ, personal communication,
11/30/22).

	Total Nitrogen 75 th	Total Phosphorus 75 th
Ecoregion	percentile	percentile
Arkansas River Valley	1.04 mg/L	0.110 mg/L
Delta	1.46 mg/L	0.34 mg/L

Table 4.11. Total phosphorus load reduction target calculations.

Station ID	WHI0059	UWTMC01	UWOFC01	WHI0199	
Stream Name	Little Red River	Ten Mile Creek	Overflow Creek	Mingo Creek	
HUC12 ID	110100140706,	110100140901,	110100140904	110100140905	
	110100140903	110100140902			
	Little Red River -	Headwaters Ten	Overflow Creek	Big Mingo	
HUC12 Name	Cedar Br, Little Red	Mile Creek, Outlet		Creek	
	River - Alder Cr	Ten Mile Creek		CICCK	
DEQ Ecoregion	Arkansas River	Arkansas River	Arkansas River	Delta	
	Valley	Valley	Valley		
Assessment	2016-2020	2001-2003	2011-2012	2011-2013	
Discussion of the test					
Number of total	52	12	5	8	
phosphorus values					
Number of total					
phosphorus values	2	2	0	0	
> assessment					
value					
Maximum value	0.171 mg/L	0.51 mg/L	0.096 mg/L	0.257 mg/L	
Reduction factor					
so all total					
phosphorus values	0.36	0.78	0	0	
< assessment					
value					

Monitoring Progress

≈ ×

QZ

...

....

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

Total Phosphorus (TP) and Scenic River Criterion Implementation (2000 - 2022) Station ID: ARK0006 Illinois River South of Siloam Springs, Arkansas

Tate Wentz Water Quality Section Manager Arkansas Department of Agriculture Natural Resources Division O: 501-682-3914 | M: 501-366-6575 Tate.Wentz@agriculture.arkansas.gov

Use of OK HAWQS, a Web-Based Tool for Critical Source Area Identification in Oklahoma

> Shanon Phillips Oklahoma Conservation Commission

OKLAHOMA WATER RESOURCES CENTER

In the good(?) old days, Critical Source ID might include...

- Driving every road mile in the watershed
- Stream walks to assess streamside sources
- Landowner/stakeholder surveys

• \$100,000+ per watershed modeling

If it ain't broke...?

- Oklahoma statutes require watershed-based nonpoint source pollution control activities..." i.e. for the whole state
- Need for modeling at the HUC 12 scale (ave 23,000 acres)
- Need to update and share models
- Developing independent models for each watershed is costly and time-consuming
- Stakeholders need a tool they can use to help evaluate/predict/prioritize programs

What is HAWQS?

Reference: https://hawqs.tamu.edu/#/

Open-sourced

- Hydrologic and Water Quality System (HAWQS)
- Developed by TX A&M for EPA
- Establishes a baseline SWAT model hydrologically and chemically calibrated at the HUC 8 (avg. 256,000 acre) scale
- Input data continuously updated by TX A&M
- HAWQS models are publicly available and permanently stored
- Other models (lakes, groundwater, etc.) can be linked & stored in HAWQS

OK.HAWQS Hydrologic and Water Quality System Oklahoma Watershed and Water Quality Assessment Tool

Log in Documentation & Support

HAWQS is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, and raw output data; a user guide, and online development, execution, and storage of a user's modeling projects.

HAWQS substantially enhances the usability of SWAT to simulate the effects of management practices based on an extensive array of crops, soils, natural vegetation types, land uses, and other scenarios for hydrology and the following water quality parameters:

- Sediment
- Pathogens
- Nutrients
- Biological oxygen demand
- Dissolved oxygen
- Pesticides
- Water temperature

HAWQS users can select from several models around the globe to run simulations, and upload their own SWAT models for public use. HAWQS allows for further aggregation and scalability of daily, monthly, and annual estimates of water quality across large geographic areas. The Texas A&M University Spatial Sciences Laboratory subject matter experts provide ongoing technical support including system design, modeling, and software development. The United States Department of Agriculture (USDA) and Texas A&M University jointly developed SWAT and have actively supported the model for more than 25 years.

For HAWQS data usage and paper citation, please reference the following:

HAWQS 2.0, 2023, "HAWQS System 2.0 and Data to model the lower 48 conterminous U.S using the SWAT model", doi.org/10.18738/T8/GDOPBA, Texas Data Repository, V2

In the media:

- Watch on YouTube: How Can You Use the Oklahoma Hydrologic and Water Quality System?
- Press release April 5, 2023: Web-based watershed assessment tool is a global resource

This project was jointly sponsored by the OCC, OSU, the USDA Agricultural Research Service, and Texas A&M AgriLife Research.

For assistance with account settings and system errors, please contact eco.web@tamu.edu.

https://ok.hawqs.ta mu.edu/#/

Strengths and Limitations of OK - HAWQS

- Strengths-
 - Public domain, automatic data updates
 - No GIS software or knowledge required
 - "Standard" assessments + additional tools for complex analyses
 - Can link to other models
 - Calibrated
 - 90% reduction in time and effort for SWAT-based environmental assessments

• Limitations-

- Available data may be limited
 - Spatial/temporal
 - Flow separation
 - Land management
- Limitations inherent to SWAT
 - Daily estimates using monthly input data
 - Routing pollutants through subbasins
 - In-stream pollutant dynamics

Applications of OK - HAWQS

- Identify critical source areas
- Test conservation practice scenarios
- Test how changing watershed impacts water quantity
 - Climate change
 - Urbanization
 - Etc.
- Help visualize challenges

Examples of OK HAWQS/SWAT Application for Critical Source ID: Little Beaver Creek

- Impaired for bacteria, total dissolved solids, and benthic macroinvertebrates
- USDA NRCS National Water Quality Initiative (NWQI) Watershed
- Landuse: Range (63%) & Cropland (22%)

Little Beaver NWQI Project

- HAWQS outputs used to ID critical source regions in each contributing HUC12 watershed
- HAWQs model predicts pollutant loading by Landuse category
- Demo HAWQS reliability to local NRCS through ground-truthing
- NRCS uses HAWQS predictors to target landowners for EQIP/NWQI funding

Priority Classification of Headwaters of Little Beaver Creek- uppermost HUC 12- Most critical (1) to least critical (5)

Sediment contributions by landuse and slope

Little Beaver NWQI- Practice Installation Begins in 2014

•	Enrolled 43
	landowners in
	contracts
•	Installed
	practices on at
	least 6400
	acres
	Delicted

 Delisted stream for E.coli in 2020

Little Beaver E. coli Concentrations			
Years	E. coli Geomean (cfu/100 ml)	Ν	
2004-06	285.5	10	
2009-11	212.3	9	
2014-16	149.2	10	
2016-18	132.6	13	
2018-20	111.7	9	
2020-22	65.77	9	
2022-23	80.5	10	

Critical Source ID with HAWQS: Illinois River Watershed

- Two-state watershed
- Long history of water quality protection/restoration programs
- Priority for both states
- Need to update management plans

OK HAWQS Illinois River Application

- Predict areas contributing most to sediment and nutrient loads
- Simulate benefits (relative) of conservation practice installation
- Evaluate implementation needs to achieve water quality standards
- Guide stakeholders in updating watershed plans

Total Sediment to the River

Illinois River HAWQS development enabled improvements to HAWQS (National and OK HAWQS)

- Conservation practice implementation drop-down menu
- Improved baseflow separation
- Flood frequency analysis
- Integration of climate models and CE Qual-WQ

Illinois River HAWQS status and future

- Draft calibrated models developed, but not finalized.
 - Models aren't identical and that is OK
- Stakeholder meetings ongoing
- Next steps:
 - use models to support stakeholder prioritization of conservation programs
 - Update watershed plans for both states
- OK-HAWQS is improved for use in other watersheds through the Illinois River model.

Questions

Contact Info: shanon.phillips@conservation.ok.gov

IMPLEMENTATION OF BMPs IN PRIORITY SUB-BASINS

Leif Kindberg Executive Director

Miles

Bustley Jones i dopendetgios com March 15, 2015

Mission

IRWP works to improve the integrity of the Illinois River through public education, community outreach, and implementation of conservation and restoration practices throughout the watershed.

IRWP Programs

- Low Impact Development/Green
 Infrastructure
- Riparian Restoration and Landowner Services
- Septic Tank Replacement Program
- Public Education
- Recreation Stewardship
- Water Quality Monitoring

Local Stakeholders

Consensus-based solutions that support our region

irwp.org

Implementation Guided by State and Local Priorities

Considerations of a rapidly growing region its needs

Focusing in on subwatersheds with highest priority BMPs

Tier 1: Increase or maintain downward nutrient trends

Water Quality

 Many streams which do not meet designated use thresholds

OK Subwatershed (2022	Parameter	
Flint Creek	OK121700060010_00	Oxygen, Dissolved
Illinois River	OK121700030280_00	Enterococcus, Escherichia coli, Phosphorus, Total
Pumpkin Hollow Creek	OK121700030090_00	Oxygen, Dissolved
Tyner Creek	OK121700050090_00	Oxygen, Dissolved
Barron Fork	OK121700050010_00	Phosphorus, Total
Caney Creek	OK121700040010_00	Macroinvertebrate Bio
Tenkiller Ferry Lake	OK121700020220_00 OK121700020220_00	Oxygen, Dissolved, Chlorophyll-A, Mercury, Phosphorus, Total
Walltrip Branch	OK121700050070_00	Macroinvertebrate Bio
Cedar Hollow Creek	OK121700030110_00	Macroinvertebrate Bio Fish Bioassessments
Tahlequah Creek (Town	OK121700030040_00	Enterococcus,
Branch)	OK121700030020_00	Escherichia coli
Stick Ross Creek	OK121700030030_00	Macroinvertebrate Bio
Park Hill Creek	OK121700020270_00	Macroinvertebrate Bio
Elk Creek	OK121700020180_00	Oxygen, Dissolved
Chicken Creek	OK121700020110_00	Fish Bioassessments
Deep Branch	OK121700010020_00	Oxygen, Dissolved

AR Subwatershed (2022) DRAFT	AU	Parameter
Little Osage Creek	AR_11110103_630 AR_11110103_933	Primary Contact E. coli
Moores Creek	AR_11110103_026	Primary Contact E. coli
Muddy Fork	AR_11110103_027	Primary Contact E. coli
Illinois River	AR_11110103_024 AR_11110103_028 AR_11110103_020 AR_11110103_018	Primary Contact E. coli; Turbidity Base/Base Flow
Baron Fork	AR_11110103_813	Critical Season DO
Clear Creek	AR_11110103_029	Primary/SecondaryContact E. coli
Unnamed Tributaryof Brush Creek	AR_11110103_733	Primary Season DO
Lake Fayetteville	AR_11110103_4080	pH - Short Term Continuous

Sources of Impairments

Streambank erosion Construction Land application of nutrients Wastewater treatment Septic systems Livestock management practices Landscaping and turf management

WATERSHED PARTNERSHIP

Green Infrastructure

- EPA 319(h) funded
- To reduce nonpoint source sediment and nutrient loads through green infrastructure best management practices
- 30+ projects over three years
- Develop educational resources, hold field tours, and present program results and opportunities to municipal Planning Commissions, Councils, and staff

GREEN INFRASTRUCTURE PROGRAM TO IMPROVE WATER QUALITY

The Illinois River watershed is considered a nutrient surplus area and is a high priority watershed for remediction and conservation. Through this program, the Illinois River Watershed Partnership (IRWP) will use green infrastructure to reduce runoff, sediment, and nutrient loads into the waterways. IRWP will work with municipalities, companies, schools, non-profit organizations, HOAs, and individuals to place these projects at a 50% cast-share in high visibility locations throughout the watershed to serve as demonstrations of stormwater quality solutions. Starting in Fabruary 2025; RIVP will accept applications for a variety of QI projects including rain gardens, bioswales, pervious pavement, green roofs, and detention pond retrofits. Please visit the link below to apply.

A detention pond retrofit helps improve water quality and recreation, reduce water quantity, maintenance costs, and safety risks, and maintain regulatory compliance.

Bioswales are designed to slow down water along a path using plants and rocks. This allows pollutants to settle and infiltrate through the soil where they can be captured and broken down.

Vegetated roofs consist of waterproof, drainage, and vegetated layers that slow down and filter rainwater before it reaches the stormwater system. Green roofs can also reduce heat islands, provide insulation, and extend roof life. Green streets utilize a variety of GI practices like curb cuts and vegetation to capture and filter rainwarder baroe it reaches the stormwater inlet. In addition to improving water quality, green streets enhance community health.

For more information on applying, please contact Holly Wren at (501) 773-9448 or hollysirwp.org. To access the application, please visit **irwp.org/giprogram**.

Funding for the Illinois River Watershed Partnership Green Infrastructure Program provided by the USEPA through the ADA-NRD Nonpoint Source Management Program.

and nutrients. The garden is filled with deep-

rooting native plants to facilitate infiltration

into the soil and phytoremediation.

Permeable pavements minimize runoff by allowing water to infiltrate into the engineered underlayer and soil. Ribon driveways are a simple way to decrease the impervious cover and runoff caused by paved driveways

Riparian Restoration Program

Focused on proven conservation BMP's

- Constructed wetlands (Practice 656)
- Critical area planting (Practice 342)
- Field borders (Practice 386)
- Filter strips (Practice 393)
- Forest stand improvement (Practice 666)
- Heavy use area protection (Practice 561)
- Prescribed grazing (Practice 528)
- Riparian forest buffer (Practice 391)
- And more...

WALTON FAMILY

Little Osage Creek Restoration

Streambank stabilization and establishment of 60-foot riparian buffer along 4,000 linear feet with cattle exclusion

Riparian Restoration Program Results

- 55 conservation plans prepared
- 21.49 miles (102% of goal) of streambank restored/protected
- 1,422 acres (107% of goal) serviced by alternative watering facilities
- 101,729 linear feet (135% of goal) of fencing installed for rotation grazing

Septic Tank Remediation Program

- Replace or repair failing septic systems and promote maintenance
- Up to 90% grant or zero-interest loan
- 70 installed since 2021; \$871,575 invested in Benton and Washington Counties

Other Program Results

- **4,085 students** from **26** different schools in '23
- **6,362+ trees planted** throughout the watershed
- Ecological monitoring at 11+ sites annually
- **4,260 pounds of trash removed** from the Illinois River and its tributaries
- 217 volunteers involved in water quality projects

IRWP Sponsors & Grantors

Thank You to Our Dedicated Partners in Illinois River Watershed Management

THANK YOU

director@irwp.org

irwp.org

Leif Kindberg Executive Director 479-422-5676

Next steps in our outcomes estimation journey

- Join April 3 for the Critical Source Area Identification and Management webinar
- Fill out the 8-question (2-min) online evaluation survey
- □ Schedule a free "coaching" session with us
 - **Email** <u>atappross@farmland.org</u>, RE: Coaching Request
- ❑ Order a free print copy of the OET Guide
 - Keyword: "AFT outcomes tools"

A Guide to Water Quality, Climate, Social, and Economic Outcomes Estimation Tools guantifying outcomes to accelerate farm conservation practice adoption

Michelle Perez, PhD | Emily J. Cole, PhD

DECEMBER 2020

