Quantifying ecosystem services

Katie Pisarello

Senior Land Use and Protection Research Scientist

To help inform decisions and investments in farm and ranchland support and protection.

Ecosystem services are grouped.

Cultural

services:

Regulating services: e.g., soil quality

Supporting services: e.g., wildlife habitat

kpisarello@farmland.org

https://www.climatehubs.usda.gov/ecosystem-services

Ecosystem services interact in a complex system.

Ecosystem services interact in a complex system.

We live in data abundance! First, manage it properly.

A data inventory example:

Variable(s)	Source	Spatial scope	Spatial resolution	Temporal scope	Temporal resolution
P, PET (Penman-Monteith), temp (mean, min, max, diurnal range), vapor pressure, wet days, cloud cover, frost days	Climate Research Unit (CRU)	Global	0.5°x0.5° (~45km at equator)	1901-2021	Monthly
Actual ET, soil E, interception loss, PET (Priestly-Taylor), snow sublimination, transpiration, open water evaporation, evaporative stress, root-zone soil moisture, surface soil moisture	Global Land Evaporation Amsterdam Model (GLEAM)	Global	0.25°x0.25°	1980-2021	Monthly
PET (Penman-Monteith), actual ET, runoff, temp (max, min), vapor pressure, precipitation accumulation, downward surface shortwave radiation, wind-speed, Climate Water Deficit, Soil Moisture, Snow Water Equivalent, Palmer Drought Severity Index, Vapor pressure deficit	TerraClimate (note: forced in part by CRU data; runoff = water balance model)	Global	0.1/24°x1/24° (~4km at equator)	1958-2020	Monthly
Runoff	Global Runoff Reconstruction (GRUN)	Global	0.5°x0.5°	1902-2014	Monthly
Land cover (% coverage per pixel): crop, desert, forest, tundra, pasture, grass, shrub, urban, water	NOAA-NCDC; 3 sources from Ramunkutty & Foley, 1999, HYDE, and Phillippean (?) & Jain (note: link is currently broken)	Global	0.5°x0.5°	1770-2020	Annual
Land cover (% coverage per pixel): cropland, pasture, primary land, secondary (recovering) land, and urban land, and underlying annual land-use transitions	ORNL Distributed Active Archive Center (DAAC)	Global	0.5°x0.5°	1500-2100	Annual
World light map (proxy for economic development)	NASA	Global	15 arc sec (~450 m)	2012-YTD	Daily to annual
For 42 crops: physical area, harvest area, production (\$) and yield (disaggregates based on rainfed, irrigated, high/low input and subsistence systems) – "SPAM" maps	Yu et al., 2020. <i>Earth System Science</i> Data.	Global	10km x 10km	2000-2020	Every 5 years

Approaches for quantifying ecosystem services.

Relationships between ecosystem services are generally quantified by using or forming equations that describe different processes (i.e., <u>modeling</u>).

O = observational M = modeling

Approaches for quantifying ecosystem services.

Relationships between ecosystem services are generally quantified by using or forming equations that describe different processes (i.e., <u>modeling</u>).

O = observational M = modeling

Quantify ecosystem services by **<u>observing relationships</u>**.

1. Assess landscape **patterning**.

2. Determine **network** dynamics.

3. Identify **common regions** across landscape. (<u>can be observational or modeling based</u>)

Assess landscape patterning.

Quantify landscape patterns to assess their broader impacts (e.g., on biodiversity, supporting service).

kpisarello@farmland.org

Example: Figure 4 in Pisarello & Jawitz, 2021. *First URL in speaker profile.*

American Farmla

SAVING THE LAND THAT SUSTAINS US

Determine production-consumption network dynamics.

Quantify partnerships to assess overall network strength (e.g., on food, provisioning service).

Degree (how many connections)

Closeness centrality (how close one is to the rest)

Betweenness centrality

(how much one acts as a "bridge" to others)

kpisarello@farmland.org

Example: Figure 2/Table 3 in McCurley (Pisarello) & Jawitz, 2017. *Third URL in speaker profile.*

Identify common regions across the landscape - observing.

Delineate boundaries that capture similar within-region dynamics (e.g., comprehensive agricultural system, all complex interactions of services)

kpisarello@farmland.org

See me for more detail: This work is in progress.

Quantify ecosystem services by modeling relationships.

1. Regression-based modeling (simple and machine learning).

2. Ensemble modeling.

3. Systems modeling.

4. Identify common regions across the landscape.

Regression-based modeling.

Describe a variable of interest (e.g., yield) using a suite of other variables we assume impact the variable of interest (e.g., rainfall, temperature, cover crops, etc.).

 $Precip * X_1 + Temp * X_2 + Cover \, crop * X_3$

____ Multi-linear regression

 Machine learning (ML) regression

ML regression modeling:

Μ

Accounts for complex relationships within the data.

Does not just assume there is always a 1:1 relationship between the variable of interest and the describing variables.

kpisarello@farmland.org

See for an example: Pisani...Pisarello, et al., 2024.

Ensemble modeling – combination of modeling approaches.

How might pine plantation management strategies impact water availability?

kpisarello@farmland.org

Example: Pisarello et al., 2022. Second URL in speaker profile.

Systems modeling – agricultural system example.

Systems modeling – agricultural system example.

Systems modeling – agricultural system example.

Identify common regions across the landscape - modeling.

Delineate boundaries that capture similar within-region dynamics (e.g., zones of similar water availability, regulating service.)

Μ

kpisarello@farmland.org

More detail: Pisarello & Jawitz, 2021. *First URL in speaker profile.*

Key takeaways.

- Quantifying ecosystem services is **important for supporting informed decision-making** on farm and ranchlands.
- There are **many ways** to quantitatively define and explore complex systems and their ecosystem services.
- Manage data properly, even third party, publicly available data.

Questions?

